TrelliscopeJS

Ryan Hafen

Gapminder

Look at mortality over time for each country

Observations: 1,704
Variables: 6
$ country   <fctr> Afghanistan, Afghanistan, Afghanistan, Afghanistan, Afgh...
$ continent <fctr> Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, Asia, As...
$ year      <int> 1952, 1957, 1962, 1967, 1972, 1977, 1982, 1987, 1992, 199...
$ lifeExp   <dbl> 28.801, 30.332, 31.997, 34.020, 36.088, 38.438, 39.854, 4...
$ pop       <int> 8425333, 9240934, 10267083, 11537966, 13079460, 14880372,...
$ gdpPercap <dbl> 779.4453, 820.8530, 853.1007, 836.1971, 739.9811, 786.113...
library(gapminder)
glimpse(gapminder)
qplot(year, lifeExp, data = gapminder, color = country, geom = "line")

qplot(year, lifeExp, data = gapminder, color = continent,
  group = country, geom = "line")
qplot(year, lifeExp, data = gapminder, color = continent,
  group = country, geom = "line") +
    facet_wrap(~ continent, nrow = 1)

qplot(year, lifeExp, data = gapminder) +
  xlim(1948, 2011) + ylim(10, 95) + theme_bw() +
  facet_wrap(~ country + continent)
qplot(year, lifeExp, data = gapminder) +
  xlim(1948, 2011) + ylim(10, 95) + theme_bw() +
  facet_trelliscope(~ country + continent, nrow = 2, ncol = 7, width = 300)

Note: this and future plots in this presentation are interactive - feel free to explore!

qplot(year, lifeExp, data = gapminder) +
  xlim(1948, 2011) + ylim(10, 95) + theme_bw() +
  facet_trelliscope(~ country + continent,
    nrow = 2, ncol = 7, width = 300, as_plotly = TRUE)

TrelliscopeJS in the Tidyverse

country_model <- function(df)
  lm(lifeExp ~ year, data = df)

by_country <- gapminder %>%
  group_by(country, continent) %>%
  nest() %>%
  mutate(
    model = map(data, country_model),
    resid_mad = map_dbl(model, function(x) mad(resid(x))))

by_country

Example adapted from "R for Data Science"

# A tibble: 142 × 5
       country continent              data    model resid_mad
        <fctr>    <fctr>            <list>   <list>     <dbl>
1  Afghanistan      Asia <tibble [12 × 4]> <S3: lm> 1.4058780
2      Albania    Europe <tibble [12 × 4]> <S3: lm> 2.2193278
3      Algeria    Africa <tibble [12 × 4]> <S3: lm> 0.7925897
4       Angola    Africa <tibble [12 × 4]> <S3: lm> 1.4903085
5    Argentina  Americas <tibble [12 × 4]> <S3: lm> 0.2376178
6    Australia   Oceania <tibble [12 × 4]> <S3: lm> 0.7934372
7      Austria    Europe <tibble [12 × 4]> <S3: lm> 0.3928605
8      Bahrain      Asia <tibble [12 × 4]> <S3: lm> 1.8201766
9   Bangladesh      Asia <tibble [12 × 4]> <S3: lm> 1.1947475
10     Belgium    Europe <tibble [12 × 4]> <S3: lm> 0.2353342
# ... with 132 more rows

Gapminder Example from "R for Data Science"

  • One row per group
  • Per-group data and models as "list-columns"
country_plot <- function(data, model) {
  figure(xlim = c(1948, 2011),
    ylim = c(10, 95), tools = NULL) %>%
    ly_points(year, lifeExp, data = data, hover = data) %>%
    ly_abline(model)
}

country_plot(by_country$data[[1]],
  by_country$model[[1]])

Plotting the Data and Model Fit for a Group

We'll use the rbokeh package to make a plot function and apply it to the first row of our data

by_country <- by_country %>%
  mutate(plot = map2_plot(data, model, country_plot))

by_country

Example adapted from "R for Data Science"

# A tibble: 142 × 6
       country continent              data    model resid_mad         plot
        <fctr>    <fctr>            <list>   <list>     <dbl>       <list>
1  Afghanistan      Asia <tibble [12 × 4]> <S3: lm> 1.4058780 <S3: rbokeh>
2      Albania    Europe <tibble [12 × 4]> <S3: lm> 2.2193278 <S3: rbokeh>
3      Algeria    Africa <tibble [12 × 4]> <S3: lm> 0.7925897 <S3: rbokeh>
4       Angola    Africa <tibble [12 × 4]> <S3: lm> 1.4903085 <S3: rbokeh>
5    Argentina  Americas <tibble [12 × 4]> <S3: lm> 0.2376178 <S3: rbokeh>
6    Australia   Oceania <tibble [12 × 4]> <S3: lm> 0.7934372 <S3: rbokeh>
7      Austria    Europe <tibble [12 × 4]> <S3: lm> 0.3928605 <S3: rbokeh>
8      Bahrain      Asia <tibble [12 × 4]> <S3: lm> 1.8201766 <S3: rbokeh>
9   Bangladesh      Asia <tibble [12 × 4]> <S3: lm> 1.1947475 <S3: rbokeh>
10     Belgium    Europe <tibble [12 × 4]> <S3: lm> 0.2353342 <S3: rbokeh>
# ... with 132 more rows

Apply This Function to Every Row

Plots as list-columns!

by_country %>%
  trelliscope(name = "by_country_lm", nrow = 2, ncol = 4)

TrelliscopeJS

By Ryan Hafen

TrelliscopeJS

Lightning talk on Trelliscope (given at R User Meetup May 2019)

  • 536
Loading comments...

More from Ryan Hafen