A mathematically-offensive introduction to stochastic calculus and Brownian motion

Alexandre René

INM-6 Book club • 14 Jan 2022

Based on

See also

Spectral solution method for distributed delay stochastic differential equations

Alexandre René

M.Sc. thesis (Ottawa 2016)

Outline

  • White noise is weird
  • Basic concepts
    • Brownian motion (aka Wiener process)
    • Stochastic integrals
    • Stochastic differentials
    • Solving an SDE
    • Change of variables (Itô’s lemma)
  • Examples
    • Ornstein-Uhlenbeck process
    • (Multiplicative noise)

Also discussed:

  • Itô vs Stratonovitch interprations

White noise is weird

  • “White” ⇒ no correlation; \(\langle ξ(t) ξ(t')\rangle = \delta(t-t')\)
  • Same power at all frequencies
  • Fractal: looks the same at all scales
  • \(ξ(t)\) is ill-defined: all values are explored in any finite interval. However,

  • statistics can be defined;
  • \(\int_0^T ξ(t) dt\) is a well defined random variable.

Closest thing:

\(ξ(t) := \frac{1}{T} \int_0^T ξ(t) dt\)

Wiener process

\( W(T) := \int_0^T ξ(t) dt\) is a Brownian motion.

\begin{aligned} \mathop{\mathrm{Var}} \left[ \int_0^T ξ(t) dt \right] &= \mathop{\mathrm{Var}} \biggl[ \underbrace{\int_0^{T/2} ξ(t) dt}_{=: W_1} + \underbrace{\int_{T/2}^T ξ(t) dt}_{=: W_2} \biggr] \\ &= 2 \mathop{\mathrm{Var}} \left[ \int_0^{T/2} ξ(t) dt \right] \\ \therefore \qquad\qquad\qquad &= n \mathop{\mathrm{Var}} \left[ \int_0^{T/n} ξ(t) dt \right] \quad \forall n \in \mathbb{N} \end{aligned}

Let’s assume \(\mathbb{E} \left[ \int_0^T ξ(t) dt \right] = 0\).    What should \(\mathrm{Var} \left[ \int_0^T ξ(t) dt \right] \) be ?

with \(W_1, W_2\) i.i.d.

\displaystyle \therefore \mathop{\mathrm{Var}} \left[ \int_0^T ξ(t) dt \right] = DT

\(D=1\) ⇒

Wiener process

Diffusion constant

Wiener process

\begin{aligned} W(T) = \int_0^T ξ(t) dt &= \sum_{k=1}^n \underbrace{\int_{(k-1)T/n}^{kT/n} ξ(t) dt}_{:=W_k(kT/n)} \quad \forall n \in \mathbb{N} \end{aligned}

What should the distribution of \(W(T) := \int_0^T ξ(t) dt \) be ?

with \(W_k\) i.i.d.

\begin{alignedat}{4} W(T) &= \int_0^T ξ(t) dt &&\sim \mathcal{N}(0, T) \\ \\ X(T) &= &&\sim \mathcal{N}(0, DT) \end{alignedat}

(Wiener process)

Central limit theorem ⇒ \(W(t)\) must* be a Gaussian RV:

(Brownian motion)

Wiener process

  • Brownian motion was described by Einstein in one of his four annus mirabilis papers.
    • (More precisely: he computed D for particles in a fluid)
  • No stochastic calculus is needed.

A solution to a stochastic diff. equation therefore take the form of a time-dependent random variable.

Stochastic integrals

we use the Riemann-Stieltjes definition of an integral:

To compute objects of the form

\displaystyle X(t) = \int_0^t f(s) dW(s) \,,
\begin{aligned} \int f(s) ds &\approx \sum_i f(s_i) (s_{i+1} - s_i) \end{aligned}
\begin{aligned} \int f(s) dW(s) &\approx \sum_i f(s_i) (W(s_{i+1}) - W(s_i)) \end{aligned}
\begin{aligned} \int f(s) dW(s) &\approx \sum_i \frac{f(s_i) + f(s_{i+1})}{2} (W(s_{i+1}) - W(s_i)) \end{aligned}

(Itô)

(Stratonovich)

Stochastic differentials

For our purposes, we consider only drift-diffusion processes

\displaystyle dX(t) = f(t, X) dt + g(t, X) dW

If

  • \(X\) is Markovian
  • \(X\) is continuous

the stochastic increment must be \(dW\)

(Gillespie 1996)

Reason: self-consistency to first order

(i.e. \(\sim \mathcal{N}(0, dt)\)).

then

Stochastic differentials

\displaystyle dX(t) = f(t, X) dt + g(t, X) dW

the stochastic increment must be \(dW\)

\begin{aligned} X(t + 2dt) &\stackrel{!}{=} X(t) + 2dX + \mathcal{O}(dt\,dW) \end{aligned}

In

\begin{aligned} X(t) + 2 f(t, X(t)) dt + 2g(t, X(t)) dW_{2dt}(t) + \mathcal{O}(dt\,dW) \end{aligned}
\begin{aligned} &= X(t) + f(t, X(t))dt + g(t, X(t))\,dW \\ &\quad+ f(t, X(t+dt))dt + g(t, X(t+dt))\, dW(t+dt) \end{aligned}
\begin{aligned} &= X(t) + f(t, X(t))dt + f(t, X(t))dt + \frac{\partial f}{\partial x} dX(t)dt \\ &\quad+ g(t, X(t))\,dW(t) + g(t, X(t))dW(t+dt) + \frac{\partial f}{\partial x} dX(t)dW(t+dt)\\ \end{aligned}
\begin{aligned} &= X(t) + 2f(t, X(t))dt + g(t, X(t))\,(dW(t) + dW(t+dt)) + \mathcal{O}(dt\,dW) \end{aligned}
\displaystyle dW_{2dt}(t) \stackrel{!}{=} dW_{dt}(t) + dW_{dt}(t+dt)

Stochastic differentials – update schemes

\displaystyle dW_{2dt}(t) \stackrel{!}{=} dW_{dt}(t) + dW_{dt}(t+dt)

It is generally safer to think of \(dt\) and \(dW\) as small finite differences, rather than true differentials

A drift-diffusion SDE thus provides an update scheme:

X(t+dt) = X(t) + f(t,X(t))\, dt + g(t,X(t)) \sqrt{dt}\, \mathcal{N}(0,1)
X(t+dt) = X(t) + f(t,X(t))\, dt + \frac{g(t,X(t)) + g(t,X(t+dt))}{2} \sqrt{dt}\, \mathcal{N}(0,1)

Itô interpretation, explicit

Stratonovich interpretation, implicit

(Euler-Maruyama scheme)

Stochastic differentials – calculus rules

In the Itô interpretation, we have the following

\begin{aligned} \langle dW \rangle &= 0 \\ \langle X(t) dW(t) \rangle &= \langle X(t) \rangle \langle dW(t) \rangle \\ \langle dW(t) dW(t') \rangle &= \begin{cases} dt & \text{if $t = t'$} \\ 0 & \text{if $t \ne t'$} \end{cases} \end{aligned}

←Itô only

Some authors (e.g. Kurt Jacobs) also write

but this is a leaky abstraction – it can lead to wrong results.

\begin{aligned} dW(t) dW(t') &= \begin{cases} dt & \text{if $t = t'$} \\ 0 & \text{if $t \ne t'$} \end{cases} \end{aligned}
\langle dW dt \rangle = \langle dt^2 \rangle = 0

Stochastic differentials – Itô’s lemma

\begin{aligned} dh = \left[\frac{\partial h}{\partial t} + \frac{\partial h}{\partial x}f(t, X) + \frac{1}{2}\frac{\partial^2 h}{\partial x^2}g(t,X)\right]dt + \frac{\partial h}{\partial x} g(t,X) dW \end{aligned}

Given a function \(h(t, X(t))\), we have

(Itô)

\begin{aligned} dh = \left[\frac{\partial h}{\partial t} + \frac{\partial h}{\partial x}f(t, X) \hphantom{+ \frac{1}{2}\frac{\partial^2 h}{\partial x^2}g(t,X)}\right]dt + \frac{\partial h}{\partial x} g(t,X) dW \end{aligned}

(Stratonovich)

Ornstein-Uhlenbeck (O-U) process

dX(t) = -μ X(t) dt + σ dW

Remark: If \(X(t)\) is Gaussian, then \(X(t+dt)\) is also Gaussian.

(A known initial condition – \(p(0, x) = δ(x-x_0)\) – counts as Gaussian.)

⇒ It suffices to solve for mean and variance.

Strategy: Obtain differential equations for the moments.

\begin{aligned} d \langle X(t) \rangle &= \langle dX(t) \rangle \\ &= \langle - μ X(t) dt \rangle + \langle σ dW \rangle \\ &= - μ \langle X(t) dt \rangle + σ \langle dW \rangle \\ &= -μ\langle X(t) \rangle dt \\ \end{aligned}
\langle X(t) \rangle = e^{-μt} \langle X(0) \rangle
\displaystyle \frac{d}{dt}\langle X(t) \rangle = -μ \langle X(t) \rangle

Ornstein-Uhlenbeck (O-U) process

dX(t) = -μ dt + σ dW
\begin{aligned} d \langle X(t)^2 \rangle &= \langle X(t+dt)^2 \rangle - \langle X(t)^2 \rangle \\[1.5ex] &= \langle [X(t) - μdt + σdW ]^2 \rangle - \langle X(t)^2 \rangle \\[1.5ex] &= \langle X(t)^2 \rangle - \langle X(t)^2 \rangle \\ &\quad -2μ \langle X(t) dt \rangle + 2σ \langle X(t)dW \rangle - 2μσ \langle dt\,dW \rangle \\ &\quad+ μ \langle dt^2 \rangle + σ^2 \langle dW^2 \rangle\\[1.5ex] &= \left[-2μ \langle X(t)\rangle + σ^2 \right]dt \\ \end{aligned}

\(= 0\) under Itô

\langle X(t)^2 \rangle = e^{-2μt} \langle X(0)^2 \rangle + \left[1 - e^{-2μt} \right] \frac{σ^2}{2μ}
\displaystyle \frac{d}{dt}\langle X(t)^2 \rangle = -2μ \langle X(t)\rangle + σ^2

Integration factor

Ornstein-Uhlenbeck (O-U) process

\begin{aligned} X(t) &\sim \mathcal{N}(m(t), Σ(t)) \end{aligned}
\begin{aligned} m(t) &= e^{-μt} \langle X(0) \rangle \\ Σ(t) &= e^{-2μt} \langle X(0)^2 \rangle + \left[1 - e^{-2μt} \right] \frac{σ^2}{2μ} - m(t)^2\\ \end{aligned}

Full solution:

where

In particular, we have the stationary solution

\begin{aligned} X(\infty) &\sim \mathcal{N}\left(0, \frac{σ^2}{2μ}\right) \end{aligned}

Final remarks

  • With mild assumptions compatible with a physical process, the correct white noise limit is the Stratonovich one.
    • Thus one often hears that the Stratonovich form is the correct one to use for physical systems.
    • A better approach may be to check for yourself how the limit works out in your case.
  • Itô and Stratonovich SDE’s are easily converted from one form to the other.
  • Multivariate processes are conceptually similar, but do require additional care
    • (non-communativity of matrices)
    • (sums of n-d Gaussians are not necessarily Gaussian)
  • Langevin form
\frac{dX}{dt} = f(t,X) + g(t,X)ξ

Index