Andrey Lukyanenko
Senior DS @ Careem
import plotly.graph_objects as go
import pandas as pd
from datetime import datetime
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/finance-charts-apple.csv')
fig = go.Figure(data=[go.Candlestick(x=df['Date'],
open=df['AAPL.Open'],
high=df['AAPL.High'],
low=df['AAPL.Low'],
close=df['AAPL.Close'])])
fig.show()
import altair as alt
from vega_datasets import data
source = data.cars()
alt.Chart(source).mark_circle(size=60).encode(
x='Horsepower',
y='Miles_per_Gallon',
color='Origin',
tooltip=['Name', 'Origin', 'Horsepower', 'Miles_per_Gallon']
).interactive()
library(ggplot2)
ggplot(mpg, aes(displ, hwy, colour = class)) +
geom_point()
import seaborn as sns
penguins = sns.load_dataset("penguins")
sns.pairplot(penguins, hue="species")
import shap
explainer = shap.TreeExplainer(model1, X_train)
shap_values = explainer.shap_values(X_train)
shap.summary_plot(shap_values, X_train)
https://towardsdatascience.com/data-visualization-in-data-science-5681cbdde5bf
https://github.com/Financial-Times/chart-doctor/tree/main/visual-vocabulary
https://revealthedata.com/blog/all/navyki-dlya-vizualizacii-dannyh-i-dataviz-inzhenerov/
https://docs.google.com/document/d/1SUZ_DXt_WXPlv1IfqlrwTa00S7b3ghJ_2o_W4yE6_UA/edit#
https://blog.datawrapper.de/better-charts/
https://www.kaggle.com/spitfire2nd/enthusiast-to-data-professional-what-changes/
https://medium.com/nightingale/style-guidelines-92ebe166addc
https://www.tableau.com/learn/articles/best-data-visualization-blogs
https://boostlabs.com/blog/10-types-of-data-visualization-tools/
https://github.com/lutzroeder/netron