Variational Monte Carlo
Stochastic multireference perturbation theory
Auxiliary field QMC
Projection QMC methods:
Mixed energy estimator:
Trial states: Multi-Slater, CCSD, Jastrow, MPS, ...
Exponentiating \(\hat{H}\): \([\hat{K}, \hat{V}] \neq 0\)
where \(|\phi\rangle\) and \(|\phi'\rangle\) are nonorthogonal determinants.
\(x_{\gamma}\): auxiliary field
Motta and Zhang (2017), 1711.02242
(Thouless, 1960)
(Stratonovich, 1957)
Sample Gaussian auxiliary fields \(X\), propagate, and measure
CCSD as \(|\psi_r\rangle\): sampling Slater determinants from CCSD
commuting ph excitations \(\rightarrow\) no Trotter error
\((\text{H}_2\text{O})_2\), (16e, 80o)
Contour shift:
In AFQMC:
Baer, Head-Gordon, Neuhauser (1998)
Zero variance principle: If \(|\psi_l\rangle\) is the exact ground state, then \(N\) and \(D\) are perfectly correlated, \(\langle\psi_0|\hat{H}|\phi_i\rangle = E_0 \langle\psi_0|\phi_i\rangle\), and the energy estimator has zero variance.
More accurate \(|\psi_l\rangle\ \rightarrow\ \) higher \(\text{Cov}(N, D)\)
\((\text{H}_2\text{O})_2\), (16e, 80o)
If \(|\psi_l\rangle\) is a Slater determinant: \(|\psi_l\rangle = |\phi_0\rangle\)
If \(|\psi_l\rangle\) is a selected CI wave function: \(|\psi_l\rangle = \sum_i^{N_d} c_i |\phi_i\rangle\)
Naive way: calculating local energy of each Slater determinant as above costs \(O(N_dN^4)\)
One of the terms:
Consider doubly excited determinants: \(c_{jkil} \hat{a}_j^{\dagger} \hat{a}_k \hat{a}_i^{\dagger} \hat{a}_l |\phi_0\rangle\)
store intermediate
Overall scaling: \(O(N^4 + N_dN)\)
factorizable term
\((\text{H}_2\text{O})_2\), (16e, 80o)
Cyclobutadiene automerization barrier
Method | DZ (20e, 72o) | TZ (20e, 172o) |
---|---|---|
CCSD(T) | 15.8 | 18.2 |
CCSDT | 7.6 | 10.6 |
TCCSD (12,12) | - | 9.2 |
MRCI+Q | - | 9.2 |
fp-AFQMC | 8.4(4) | 10.2(4) |
kcal/mol
kcal/mol
FeO (22e, 76o)
Symmetry breaking \(\rightarrow\) more variational freedom
Break the symmetry under a projector, to retain good quantum numbers
Projection in VMC by restricting random walk to the symmetry sector
Symmetries: spin, number, complex conjugation, ...
Example: complex conjugation in \(\text{H}_2\) near dissociation
Jastrow symmetry projected state:
\(\text{N}_2\)
d (Bohr) | Exact (DMRG) | Jastrow-KS_zPfaffian | Green's function MC |
1.6 | -0.5344 | -0.5337 | -0.5342 |
1.8 | -0.5408 | -0.5400 | -0.5406 |
2.5 | -0.5187 | -0.5180 | -0.5185 |
U | Benchmark energy | Jastrow- KS_zGHF |
Green's function MC |
2 | -1.1962 | -1.1920 | -1.1939 |
4 | -0.8620 | -0.8566 | -0.8598 |
8 | -0.5237 | -0.5183 | -0.5221 |
Hartree/particle