Variational Monte Carlo
Stochastic multireference perturbation theory
Auxiliary field QMC
Projection QMC methods:
Mixed energy estimator:
Trial states: Selected CI, CCSD, Jastrow, MPS, ...
Exponentiating \(\hat{H}\): \([\hat{K}, \hat{V}] \neq 0\)
where \(|\phi\rangle\) and \(|\phi'\rangle\) are nonorthogonal determinants.
\(x_{\gamma}\): auxiliary field
Motta and Zhang (2017), 1711.02242
(Thouless, 1960)
(Stratonovich, 1957)
Sample Gaussian auxiliary fields \(X\), propagate, and measure
CCSD as \(|\psi_r\rangle\): sampling Slater determinants from CCSD
commuting ph excitations \(\rightarrow\) no Trotter error
\((\text{H}_2\text{O})_2\), (16e, 80o)
Contour shift:
In AFQMC:
Baer, Head-Gordon, Neuhauser (1998)
If \(|\psi_l\rangle\) is the exact ground state, then \(N\) and \(D\) are perfectly correlated, \(\langle\psi_0|\hat{H}|\phi_i\rangle = E_0 \langle\psi_0|\phi_i\rangle\), and the energy estimator has zero variance. More accurate \(|\psi_l\rangle\ \rightarrow\ \) higher \(\text{Cov}(N, D)\).
\((\text{H}_2\text{O})_2\), (16e, 80o)
Selected configuration interaction: put the most important configurations in the state using particle-hole excitations and diagonalize
If \(|\psi_l\rangle\) is a Slater determinant: \(|\psi_l\rangle = |\psi_0\rangle\)
If \(|\psi_l\rangle\) is a selected CI wave function: \(|\psi_l\rangle = \sum_i^{N_d} c_i |\psi_i\rangle\)
Naive way: calculating local energy of each Slater determinant as above costs \(O(N_dN^4)\)
Generalized Wick's theorem
consider \(|\psi_l\rangle = c_{ptqu}\hat{a}_t^{\dagger}\hat{a}_p\hat{a}_u^{\dagger}\hat{a}_q|\psi_0\rangle\) (double excitations)
\(O(N^4 + N_dN)\)
\((\text{H}_2\text{O})_2\), (16e, 80o)
kcal/mol
\(\text{H}_{50}\) (50e, 50o)
Gets rid of the sign problem, but has a systematic trial dependent bias
\(\text{H}_{10}\) (10e, 50o)
Strategy:
Ground state minimizes
McMillan (1965)
Symmetry breaking \(\rightarrow\) more variational freedom
Projection in VMC by restricting random walk to the symmetry sector
Correlates doublons and holons, can describe Mott insulating behavior
Symmetries: spin, complex conjugation, number, ...
Break the symmetry under a projector, to retain good quantum numbers
Jastrow factor:
d (Bohr) | Exact (DMRG) | Jastrow-KSzPfaffian | Green's function MC |
1.6 | -0.5344 | -0.5337 | -0.5342 |
1.8 | -0.5408 | -0.5400 | -0.5406 |
2.5 | -0.5187 | -0.5180 | -0.5185 |
Hartree/particle
U/t | Benchmark energy | Jastrow- KSzGHF |
Green's function MC |
2 | -1.1962 | -1.1920 | -1.1939 |
4 | -0.8620 | -0.8566 | -0.8598 |
8 | -0.5237 | -0.5183 | -0.5221 |
Density-density correlation function: 18 site 2D Hubbard model (\(U/t=4\))
inverse susceptibility
heat capacity
G. Cao, et al. (2020) 1901.04125
Face shared octahedra
Calculating valence electron wave functions for embedded clusters including all relevant interactions
Low lying energy levels:
Face shared
Corner shared
Electron model:
\(H = t_{ij}c_i^{\dagger}c_j +v_{ijkl}c_i^{\dagger}c_j^{\dagger}c_lc_k + \dots\)
Spin model:
\(H = J_{ij}\mathbf{S}_i.\mathbf{S}_j + J_{ijkl}(\mathbf{S}_i.\mathbf{S}_j)(\mathbf{S}_k.\mathbf{S}_l) + \dots \)
Parton theory:
\(H = t_{ij}f_i^{\dagger}A_{ij}f_j + \dots\)