Structure and dynamics of electron-phonon coupled systems using neural quantum states

 AM, Robinson, Lee, Reichman arXiv:2405.08701

Ankit Mahajan

Introduction

V_{e-\text{lattice}}= \sum_n V(r_e-R_n-\delta R_n)\approx \sum_n V(r_e-R_n)-\delta R_n.\nabla V(r_e-R_n)
H_{\text{lattice}} \approx -\sum_n \frac{\nabla_n^2}{2} + \sum_{n,m}\frac{1}{2}\delta R_n. D_{mn}.\delta R_m

Quantum effects:

Riley, et al. Nature Communications (2018)

Nan, et al. Physical Review B (2009)

Electron-lattice interaction using linear approximation

Lattice energy within harmonic approximation

Outline

  • Model Hamiltonians
  • NQS and variational Monte Carlo (VMC)
  • Results
  • Calculation of dynamical correlation functions
  • Results
  • Ground state properties
  • Excited states and dynamical properties

Model Hamiltonians

H_{\text{eph}}=\sum_n\delta R_n.\nabla V(r_e-R_n)

Using a Bloch basis

H_{\text{eph}} = g_{kq}c_{k+q}^{\dagger}c_{k}\left(b^{\dagger}_{-q} + b_{q} \right)
H_e = \epsilon_{k}c_{k}^{\dagger}c_{k}\qquad H_{\text{ph}} = \omega_{q}b_{q}^{\dagger}b_{q}

General linear coupling 

Local lattice Hamiltonians (in the site basis)

  • Holstein: density coupling
H_{\text{Holstein}} = -t_{\langle ij\rangle}(c_i^{\dagger}c_j+\text{h.c.}) + \omega_0b_i^{\dagger}b_i - g c^{\dagger}_ic_i(b_i^{\dagger}+b_i)

electron coupling to intramolecular vibrations in molecular crystals

Model Hamiltonians

  • SSH / Peierls: phonon modulated hopping
H_{\text{SSH}}^{\text{eph}} = -g \sum_{\langle ij\rangle} (c_i^{\dagger}c_j + \text{h.c.})(x_i-x_j)
  • Bond model: phonons on bonds
H_{\text{Bond}}^{\text{eph}} = - g \sum_{\langle ij\rangle}(c_i^{\dagger}c_j + \text{h.c.})x_{\langle ij\rangle}

Fillings:

  • Dilute limit: polaron and bipolaron effects, relevant in lightly doped or photoexcited carriers in semiconducting systems
  • Dense limit: interplay of e-e and eph interactions
H_{\text{Hubbard}} = Un_{i\uparrow}n_{i\downarrow}

Outline

  • Model Hamiltonians
  • NQS and variational Monte Carlo (VMC)
  • Results
  • Calculation of dynamical correlation functions
  • Results
  • Ground state properties
  • Excited states and dynamical properties

Neural quantum states

x_{i+1, j} = \text{ReLU}(W_{i,j,k}\circ x_{i,k}+b_{i,j})
NN(n_e, n_{\nu})

Occupation numbers as inputs to a fully-connected feedforward network

n_e,n_{\nu}
|\psi_{\text{NQS}}\rangle = \sum_{n} \frac{\exp{(f(n))}}{\sqrt{\prod_in_{\nu}^i!}} |n\rangle
f(n) = NN_r(n) + iNN_{\phi}(n)

Symmetry projection (site basis): drastically improves performance

For dense systems, we use a GHF reference:

\langle n|\psi\rangle = \langle n|\psi_{\text{NQS}}\rangle \langle n_e|\psi_{\text{GHF}}\rangle
\psi^S(n)=\frac{1}{N}\sum_g c_g \psi(g.n)

With translational symmetry, polaron NQS with one hidden neuron is equivalent to the Toyozawa wave function

|\psi_{\text{Toyozawa}}^k\rangle=P_k\left(\sum_i \phi_i c_i^{\dagger}\right) \exp \left(-\sum_{\nu}\xi_{\nu}b_{\nu}^{\dagger} - \xi_{\nu}^*b_{\nu}\right)\ket{0}

e-e and e-ph Jastrows can also be efficiently represented using NQS

Variational Monte Carlo:

\frac{\langle \psi|O|\psi\rangle}{\langle \psi|\psi\rangle} = \sum_{w} \frac{|\langle\psi|w\rangle|^2}{\langle\psi|\psi\rangle}\frac{\langle w|O|\psi\rangle}{\langle w|\psi\rangle}
\frac{\langle w|O|\psi\rangle}{\langle w|\psi\rangle} = \sum_{w'}\langle w|O|w'\rangle\frac{\langle w'|\psi\rangle}{\langle w|\psi\rangle}

For polarons and bipolarons, cost of energy calculation with translational symmetry ~ cost in the momentum basis 

Rejection free sampling, AMSGrad optimization

Outline

  • Model Hamiltonians
  • NQS and variational Monte Carlo (VMC)
  • Results
  • Calculation of dynamical correlation functions
  • Results
  • Ground state properties
  • Excited states and dynamical properties

30 site chain, \(\omega_0=0.5\)

Holstein

Bond

Holstein

Bond

10x10 square lattice

Convergence of polaron binding energy with the number of hidden neurons

Self-trapping?

DQMC: Zhang, et al. Physical Review B (2021)

Electron-phonon correlation function

10x10 square lattice, \(\omega_0=1, \lambda=0.5\)

Dispersive phonons and avoided crossings

42 sites Holstein* polaron with \(\omega_q=1+0.8\cos(q)\), \(\lambda=0.5\)

Model from: Bonča and Trugman Physical Review B (2021)

Lithium fluoride hole polaron

Ab initio model with 3 e and 6 \(\nu\) bands

Other estimates: 1.98 eV (DFPT), 2.2 eV (GFPT), 1.96 eV (CSPT2)

13x13x13

Bipolarons: 12x12 lattice, light and strongly bound

Bond

SSH

Half-filled, 20 site chain, \(\omega_0=1, U=4\) 

AF \(\rightarrow\) CDW

AFQMC: Lee, et al. Physical Review B (2021)

Outline

  • Model Hamiltonians
  • NQS and variational Monte Carlo (VMC)
  • Results
  • Calculation of dynamical correlation functions
  • Results
  • Ground state properties
  • Excited states and dynamical properties

LR-VMC: excited states and dynamic properties

\ket{\psi_{\mu}} = \frac{\partial \ket{\psi_0}}{\partial p_{\nu}}
\mathbf{H}\mathbf{C} = E\mathbf{S}\mathbf{C},

Calculation of \(\langle w|H|\psi_{\nu}\rangle\) for all \(\nu\) can be performed at the same cost as energy by using reverse mode AD!

Tangent space of the NQS ansatz provides a natural subspace for describing low-lying excitations

Using ground state probability for sampling is very inefficient.

Reweighting technique

Sample from a distribution that has significant support on excited states

Holstein polaron: \(\omega_0=1\), \(\lambda=1\), 6 sites, 5 maximum phonons

Outline

  • Model Hamiltonians
  • NQS and variational Monte Carlo (VMC)
  • Results
  • Calculation of dynamical correlation functions
  • Results
  • Ground state properties
  • Excited states and dynamical properties

Convergence of the one particle spectral function

Bond polaron: 8 sites, \(\omega_0=1\), \(\lambda=1\), \(\eta=0.05\)

LR-VMC polaron spectral functions on a 30 site chain, \(\omega_0=1\), \(\lambda=1\) 

Hubbard-Holstein model 

Dynamical spin and charge structure factors for a half-filled 30 site chain, \(\omega_0=5, \lambda=0.25\), and \(U=4\)

Summary

  • NQS can be used to describe a range of eph interactions accurately and efficiently
  • This method can be used to perform ab initio calculations with non-trivial systems
  • It allows the calculation of dynamical properties as a natural extension of the ground state method
  • Future work will focus on finite temperature properties and better description of electron correlation within NQS

Thank you!