DESI 2024: Survey Overview and Cosmological constraints from Baryon Acoustic Oscillations

Arnaud de Mattia

CEA Saclay

IRN, June 11th

Thanks to our sponsors and

72 Participating Institutions!

DESI 3D Map

Physics program
- Galaxy and quasar clustering
- Lyman-alpha forest
- Clusters and cross-correlations
- Galaxy and quasar physics
- Milky Way Survey
- Transients and low-z

DESI 3D Map

Physics program
- Galaxy and quasar clustering
- Lyman-alpha forest

- Clusters and cross-correlations
- Galaxy and quasar physics
- Milky Way Survey
- Transients and low-z

DESI Y5 galaxy samples

13.5 million Bright Galaxies

0 < z < 0.4

8 million LRGs

0.4 < z < 0.8

16 million ELGs

0.6 < z < 1.6

3 million QSOs

Lya 1.8<z1.8 < z

Tracers 0.8<z<2.10.8 < z < 2.1

Y5 40\sim 40 M galaxy redshifts!

From images to redshifts

imaging surveys (2014 - 2019) + WISE (IR)

target selection

spectroscopic observations

spectra and redshift measurements

Mayall Telescope

focal plane 5000 fibers

fiber view camera

wide-field corrector FoV 8 deg2\sim 8~\mathrm{deg}^{2}

ten 3-channel spectrographs

49 m, 10-cable fiber run

Kitt Peak, AZ

Focal plane: 5000 robotic positioners

86 cm

0.1 mm

Exposure time (dark): 1000 s

Configuration of the focal plane
CCD readout
Go to next pointing

140 s

Spectroscopic pipeline

wavelength

fiber number

z=2.1z = 2.1 QSO

z=0.9z = 0.9 ELG

Lyα\alpha

CIV

CIII

[OII] doublet at 2727A˚2727 \AA up to z=1.6z = 1.6

[OII]

Lyα\alpha at 1216A˚1216 \AA down to z=2.0z = 2.0

DESI Y5 forecasts

Survey Validation (arXiv:2306.06307)

BAO and RSD constraints at the end of the survey (Δz=0.1 \Delta z = 0.1 )

Lyα\alpha

DESI Y5 forecasts

Survey Validation (arXiv:2306.06307)

BAO and RSD constraints at the end of the survey (Δz=0.1 \Delta z = 0.1 )

Lyα\alpha

(w/ Planck)

DESI data release 1 (DR1)

Observations from May 14th 2021 to June 12th 2022

Final survey

- dark time (LRG, ELG, QSO): 7 visits

- bright time (BGS): 5 visits

- 14,000 deg2\mathrm{deg}^2

DESI data release 1 (DR1)

5.7 million unique redshifts at z < 2.1 and > 420,000 Lyα\alpha QSO at z > 2.1

Release of DESI DR1 (BAO) results

April 4th 2024

First batch of DESI DR1 cosmological analyses
https://data.desi.lbl.gov/doc/papers/


• DESI 2024 I: First year data release
• DESI 2024 II: DR1 catalogs
DESI 2024 III: BAO from Galaxies and Quasars
DESI 2024 IV: BAO from the Lyman-Forest
• DESI 2024 V: RSD from Galaxies and Quasars
DESI 2024 VI: Cosmological constraints from BAO measurements
• DESI 2024 VII: Cosmological constraints from RSD measurements

Release of DESI DR1 (BAO) results

April 4th 2024

First batch of DESI DR1 cosmological analyses
https://data.desi.lbl.gov/doc/papers/


• DESI 2024 I: First year data release
• DESI 2024 II: DR1 catalogs
DESI 2024 III: BAO from Galaxies and Quasars
DESI 2024 IV: BAO from the Lyman-Forest
• DESI 2024 V: RSD from Galaxies and Quasars
DESI 2024 VI: Cosmological constraints from BAO measurements
• DESI 2024 VII: Cosmological constraints from RSD measurements

Baryon acoustic oscillations

Sound waves in primordial plasma

At recombination (z1100z \sim 1100)

  • plasma changes to optically thin
  • baryons decouple from photons
  • sound wave stalls

Baryon acoustic oscillations

Sound waves in primordial plasma

At recombination (z1100z \sim 1100)

  • plasma changes to optically thin
  • baryons decouple from photons
  • sound wave stalls

spherical shell in the distribution of galaxies, of radius the distance that sound waves travelled

= sound horizon scale at the drag epoch rd150  Mpc100  Mpc/h r_\mathrm{d} \sim 150 \; \mathrm{Mpc} \sim 100 \; \mathrm{Mpc}/h

  • transverse to the line-of-sight: DM(z)/rdD_\mathrm{M}(z) / r_\mathrm{d}
zz
z
θBAO=rd/DM(z)\theta_\mathrm{BAO} = r_\mathrm{d} / D_\mathrm{M}(z)
\theta_\mathrm{BAO} = r_\mathrm{d} / D_\mathrm{M}(z)

BAO measurements

transverse comoving distance

sound horizon rdr_d

  • transverse to the line-of-sight: DM(z)/rdD_\mathrm{M}(z) / r_\mathrm{d}
  • along the line-of-sight: DH(z)/rd=c/(H(z)rd)D_\mathrm{H}(z) / r_\mathrm{d} = c / (H(z) r_\mathrm{d})

BAO measurements

zz
z
ΔzBAO=rd/DH(z)\Delta z_\mathrm{BAO} = r_\mathrm{d} / D_\mathrm{H}(z)
\Delta z_\mathrm{BAO} = r_\mathrm{d} / D_\mathrm{H}(z)

Hubble distance

sound horizon rdr_d

  • transverse to the line-of-sight: DM(z)/rdD_\mathrm{M}(z) / r_\mathrm{d}
  • along the line-of-sight: DH(z)/rd=c/(H(z)rd)D_\mathrm{H}(z) / r_\mathrm{d} = c / (H(z) r_\mathrm{d})

At multiple redshifts zz

BAO measurements

z1z_1
z_1
z2z_2
z_2
z3z_3
z_3

Correlation functions

Excess probability to find 2 galaxies separated by a separation s

Correlation functions

BAO peak

Power spectra

Power spectra

BAO wiggles

Some fits: configuration space

isotropic measurement

anisotropic measurement

(DM2(z)DH(z))1/3/rd\propto (D_{\mathrm{M}}^{2}(z) D_\mathrm{H}(z))^{1/3} / r_\mathrm{d}
\propto (D_{\mathrm{M}}^{2}(z) D_\mathrm{H}(z))^{1/3} / r_\mathrm{d}
DM(z)/DH(z)\propto D_{\mathrm{M}}(z) / D_\mathrm{H}(z)
\propto D_{\mathrm{M}}(z) / D_\mathrm{H}(z)

Some fits: Fourier space

isotropic measurement

anisotropic measurement

(DM2(z)DH(z))1/3/rd\propto (D_{\mathrm{M}}^{2}(z) D_\mathrm{H}(z))^{1/3} / r_\mathrm{d}
\propto (D_{\mathrm{M}}^{2}(z) D_\mathrm{H}(z))^{1/3} / r_\mathrm{d}
DM(z)/DH(z)\propto D_{\mathrm{M}}(z) / D_\mathrm{H}(z)
\propto D_{\mathrm{M}}(z) / D_\mathrm{H}(z)

Non-linear evolution

Non-linear structure growth and peculiar velocities blur and shrink (slightly) the ruler

Eisenstein et al. 2008, Padmanabhan et al. 2012

Density field reconstruction

Estimates Zeldovich displacements from observed field and moves galaxies back: refurbishes the ruler (improves precision and accuracy)

reconstruction

Density field reconstruction

DESI DR1 BAO analysis

  • Biggest ever spectroscopic BAO dataset (NtracerN_\mathrm{tracer} and VV)

5.7 million unique redshifts

Effective volume Veff=18  Gpc3V_\mathrm{eff} = 18 \; \mathrm{Gpc}^{3}

3×3 \times bigger than SDSS!

DESI DR1 BAO analysis

  • Biggest ever spectroscopic BAO dataset (NtracerN_\mathrm{tracer} and VV)
  • Blind analysis to mitigate observer / confirmation biases (catalog-level blinding)
(R.A.,Dec.,z)(x,y,z)(R.A.,Dec.,z)(\mathrm{R.A.}, \mathrm{Dec.}, z) \Longrightarrow (x, y, z) \Longrightarrow (\mathrm{R.A.}^\prime, \mathrm{Dec.}^\prime, z^\prime)
(\mathrm{R.A.}, \mathrm{Dec.}, z) \Longrightarrow (x, y, z) \Longrightarrow (\mathrm{R.A.}^\prime, \mathrm{Dec.}^\prime, z^\prime)

fiducial cosmology

blinded cosmology (Ωm,w0,wa\Omega_\mathrm{m}, w_0, w_a)

(random & unknown)

DESI DR1 BAO analysis

  • Biggest ever spectroscopic BAO dataset (NtracerN_\mathrm{tracer} and VV)
  • Blind analysis to mitigate observer / confirmation biases (catalog-level blinding)
(R.A.,Dec.,z)(x,y,z)(R.A.,Dec.,z)(\mathrm{R.A.}, \mathrm{Dec.}, z) \Longrightarrow (x, y, z) \Longrightarrow (\mathrm{R.A.}^\prime, \mathrm{Dec.}^\prime, z^\prime)
(\mathrm{R.A.}, \mathrm{Dec.}, z) \Longrightarrow (x, y, z) \Longrightarrow (\mathrm{R.A.}^\prime, \mathrm{Dec.}^\prime, z^\prime)

fiducial cosmology

blinded cosmology (Ωm,w0,wa\Omega_\mathrm{m}, w_0, w_a)

(random & unknown)

+ RSD blinding: change reconstructed peculiar velocities

+ fNLf_\mathrm{NL} blinding: add clustering-dependent signal on large scales with weights

DESI DR1 BAO analysis

  • Biggest ever spectroscopic BAO dataset (NtracerN_\mathrm{tracer} and VV)
  • Blind analysis to mitigate observer / confirmation biases (catalog-level blinding)
  • Theory developments in BAO fitting code
Pgg(k,μ)=B(k,μ)Pnw(k)+C(k,μ)Pw(k)+D(k,μ)P_\mathrm{gg}(k, \mu) = \mathcal{B}(k, \mu) P_\mathrm{nw}(k) + \mathcal{C}(k, \mu) P_\mathrm{w}(k) + \orange{\mathcal{D}(k, \mu)}
P_\mathrm{gg}(k, \mu) = \mathcal{B}(k, \mu) P_\mathrm{nw}(k) + \mathcal{C}(k, \mu) P_\mathrm{w}(k) + \orange{\mathcal{D}(k, \mu)}

Chen, Howlett et al. 2024

DESI DR1 BAO analysis

  • Biggest ever spectroscopic BAO dataset (NtracerN_\mathrm{tracer} and VV)
  • Blind analysis to mitigate observer / confirmation biases (catalog-level blinding)
  • Theory developments in BAO fitting code
  • New and improved reconstruction methods
  • New combined tracer method used for overlapping galaxy samples (LRG and ELG in 0.8<z<1.10.8 < z < 1.1)

DESI DR1 BAO analysis

  • Biggest ever spectroscopic BAO dataset (NtracerN_\mathrm{tracer} and VV)
  • Blind analysis to mitigate observer / confirmation biases (catalog-level blinding)
  • Theory developments in BAO fitting code
  • New and improved reconstruction methods
  • New combined tracer method used for overlapping galaxy samples (LRG and ELG in 0.8<z<1.10.8 < z < 1.1)
  • Unified BAO pipeline applied to all (discrete) tracer / redshift bins consistently

Tests of systematic errors

Considered many possible sources of systematic errors using simulations and data:

  • observational effects (imaging systematics, fiber collisions)
  • BAO reconstruction (2 algorithms compared)
  • covariance matrix construction
  • incomplete theory modelling
  • choice of fiducial cosmology
  • galaxy-halo (HOD) model uncertainties

no systematics detected

systematics << statistics

Max effect: σstat.+syst.<1.05σstat.\sigma_\mathrm{stat. + syst.} < 1.05 \sigma_\mathrm{stat.}

Release of DESI DR1 (BAO) results

April 4th 2024

First batch of DESI DR1 cosmological analyses
https://data.desi.lbl.gov/doc/papers/


• DESI 2024 I: First year data release
• DESI 2024 II: DR1 catalogs
DESI 2024 III: BAO from Galaxies and Quasars
DESI 2024 IV: BAO from the Lyman-Forest
• DESI 2024 V: RSD from Galaxies and Quasars
DESI 2024 VI: Cosmological constraints from BAO measurements
• DESI 2024 VII: Cosmological constraints from RSD measurements

Lyα\alpha forest

Absorption in QSO spectra by neutral hydrogen in the intergalactic medium: λabs=(1+zHI)×1215.17  A˚\lambda_\mathrm{abs} = (1 + z_\mathrm{HI}) \times 1215.17 \; \AA

Transmitted flux fraction F=eτF = e^{-\tau} probes the fluctuation in neutral hydrogen density, τnHI\tau \propto n_\mathrm{HI}

credit: Andrew Pontzen

Lyα\alpha correlation functions in DESI DR1

Lyα\alpha - Lyα\alpha

Lyα\alpha - QSO

DESI DR1 Lyα\alpha BAO analysis

  • Biggest ever Lyα\alpha dataset (NtracerN_\mathrm{tracer})

>420,000 Lyα\alpha QSO at z > 2.1

2×2 \times more than SDSS!

DESI DR1 Lyα\alpha BAO analysis

  • Biggest ever Lyα\alpha dataset (NtracerN_\mathrm{tracer})
  • First blind analysis to mitigate observer / confirmation biases (correlation function-level blinding)

DESI DR1 Lyα\alpha BAO analysis

  • Biggest ever Lyα\alpha dataset (NtracerN_\mathrm{tracer})
  • First blind analysis to mitigate observer / confirmation biases (correlation function-level blinding)
  • Modelling of the correlation function:
    • cosmo signal
PLyα(k,μ)=b2(1+βμ2)2Plin(k,μ)FNL(k,μ)P_{\mathrm{Ly}\alpha}(k, \mu) = \blue{b^{2} (1 + \beta \mu^2)^2} \orange{P_\mathrm{lin}(k, \mu)} \green{F_\mathrm{NL}(k, \mu)}
P_{\mathrm{Ly}\alpha}(k, \mu) = \blue{b^{2} (1 + \beta \mu^2)^2} \orange{P_\mathrm{lin}(k, \mu)} \green{F_\mathrm{NL}(k, \mu)}

linear bias + RSD

hydro-sim

BAO

μ=r/r2+r2\mu = r_\parallel / \sqrt{r_\parallel^2 + r_\perp^2}
\mu = r_\parallel / \sqrt{r_\parallel^2 + r_\perp^2}

DESI DR1 Lyα\alpha BAO analysis

  • Biggest ever Lyα\alpha dataset (NtracerN_\mathrm{tracer})
  • First blind analysis to mitigate observer / confirmation biases (correlation function-level blinding)
  • Modelling of the correlation function:
    • cosmo signal
    • high-column density
    • metal absorbers
r1λLyα1λmetalr_\parallel \propto \left\vert\frac{1}{\lambda_{\mathrm{Ly}\alpha}} - \frac{1}{\lambda_{\mathrm{metal}}}\right\vert
r_\parallel \propto \left\vert\frac{1}{\lambda_{\mathrm{Ly}\alpha}} - \frac{1}{\lambda_{\mathrm{metal}}}\right\vert

SiII

DESI DR1 Lyα\alpha BAO analysis

  • Biggest ever Lyα\alpha dataset (NtracerN_\mathrm{tracer})
  • First blind analysis to mitigate observer / confirmation biases (correlation function-level blinding)
  • Modelling of the correlation function:
    • cosmo signal
    • high-column density
    • metal absorbers
    • correlated noise (sky subtraction)

DESI DR1 Lyα\alpha BAO analysis

  • Biggest ever Lyα\alpha dataset (NtracerN_\mathrm{tracer})
  • First blind analysis to mitigate observer / confirmation biases (correlation function-level blinding)
  • Modelling of the correlation function

physical model fit

+ broadband polynomial

 

broadband: <0.1σ< 0.1\sigma

DESI DR1 Lyα\alpha BAO analysis

  • Biggest ever Lyα\alpha dataset (NtracerN_\mathrm{tracer})
  • First blind analysis to mitigate observer / confirmation biases (correlation function-level blinding)
  • Modelling of the correlation function
  • Cross-covariance matrix

Correlation matrix

smoothed jackknife, validated with mocks

10% impact on BAO uncertainty

DESI DR1 Lyα\alpha BAO analysis

  • Biggest ever Lyα\alpha dataset (NtracerN_\mathrm{tracer})
  • First blind analysis to mitigate observer / confirmation biases (correlation function-level blinding)
  • Modelling of the correlation function
  • Cross-covariance matrix
  • Very stable results, systematic uncertainty neglected

Tests of systematic errors

tests with same dataset (not red): shifts <σstat/3< \sigma_\mathrm{stat}/3

tests with varying datasets (red): shifts consistent with stat.

Release of DESI DR1 (BAO) results

April 4th 2024

First batch of DESI DR1 cosmological analyses
https://data.desi.lbl.gov/doc/papers/


• DESI 2024 I: First year data release
• DESI 2024 II: DR1 catalogs
DESI 2024 III: BAO from Galaxies and Quasars
DESI 2024 IV: BAO from the Lyman-Forest
• DESI 2024 V: RSD from Galaxies and Quasars
DESI 2024 VI: Cosmological constraints from BAO measurements
• DESI 2024 VII: Cosmological constraints from RSD measurements

  • transverse to the line-of-sight: DM(z)/rdD_\mathrm{M}(z) / r_\mathrm{d}
  • along the line-of-sight: DH(z)/rd=c/(H(z)rd)D_\mathrm{H}(z) / r_\mathrm{d} = c / (H(z) r_\mathrm{d})
  • low S/N, isotropic average: DV(z)/rd=(zDM2(z)DH(z))1/3/rd D_\mathrm{V}(z) / r_\mathrm{d} = (z D_{\mathrm{M}}^{2}(z) D_\mathrm{H}(z))^{1/3} / r_\mathrm{d}

BAO measurements

BAO measures ratios of distances over the sound horizon scale at the drag epoch ["standard ruler"] rdr_\mathrm{d}

Let's factor out the hh terms:

  • [DM(z)h](Ωm,fDE,ΩK,...)/[rd(Ωmh2,Ωbh2)h]\color{blue}{[D_\mathrm{M}(z) h] (\Omega_\mathrm{m}, f_\mathrm{DE}, \Omega_\mathrm{K}, ...)} \color{black}{/} \color{orange}{[r_\mathrm{d}(\Omega_\mathrm{m} h^{2}, \Omega_\mathrm{b} h^{2}) h]}
  • [DH(z)h](Ωm,fDE,ΩK,...)/[rd(Ωmh2,Ωbh2)h] \color{blue}{[D_\mathrm{H}(z) h] (\Omega_\mathrm{m}, f_\mathrm{DE}, \Omega_\mathrm{K}, ...)} \color{black}{/} \color{orange}{[r_\mathrm{d}(\Omega_\mathrm{m} h^{2}, \Omega_\mathrm{b} h^{2}) h]}

BAO measurements at different zz constrain:

  • energy content (Ωm,fDE,...) \color{blue}{(\Omega_\mathrm{m}, f_\mathrm{DE}, ...)}
  • constant-over-zz product rdh\color{orange}{r_\mathrm{d} h} i.e. H0rd\color{orange}{H_{0} r_\mathrm{d}}

These quantities directly relate to base cosmological parameters

BAO measurements

h=H0/[100  km/s/Mpc]h = H_{0} / [100\; \mathrm{km}/\mathrm{s} / \mathrm{Mpc}]

Ωm\Omega_\mathrm{m} fractional energy density of matter

fDEf_\mathrm{DE} dark energy

ΩK\Omega_\mathrm{K} curvature

Ωb\Omega_{b} baryons

DESI Y1 BAO

DESI BAO measurements

DESI Y1 BAO

DESI BAO measurements

DESI Y1 BAO

DESI BAO measurements

DESI Y1 BAO

DESI BAO measurements

DESI Y1 BAO

DESI BAO measurements

DESI Y1 BAO

DESI BAO measurements

DESI Y1 BAO

DESI BAO measurements

Consistent with each other,

and complementary

Ωm=0.295±0.015(5.1%)H0rd=(101.8±1.3)[100kms1](1.3%)DESI\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.295 \pm 0.015 & \mathbf{(5.1\%)} \\ H_{0} r_\mathrm{d} &= (101.8 \pm 1.3) \, [100 \, \mathrm{km} \, \mathrm{s}^{-1}] & \mathbf{(1.3\%)} \end{align*}}_{\textstyle \text{\color{black}{DESI}}}
\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.295 \pm 0.015 & \mathbf{(5.1\%)} \\ H_{0} r_\mathrm{d} &= (101.8 \pm 1.3) \, [100 \, \mathrm{km} \, \mathrm{s}^{-1}] & \mathbf{(1.3\%)} \end{align*}}_{\textstyle \text{\color{black}{DESI}}}

Consistency with other probes

DESI Y1 BAO consistent with:

Consistency with other probes

DESI Y1 BAO consistent with:

Consistency with other probes

DESI Y1 BAO consistent with:

Consistency with other probes

DESI Y1 BAO consistent with:

Ωm=0.3069±0.0050  (1.6%)DESI + CMB\underbrace{ \Omega_\mathrm{m} = 0.3069 \pm 0.0050 \; \mathbf{(1.6\%)} }_{\textstyle \text{\green{DESI + CMB}}}
\underbrace{ \Omega_\mathrm{m} = 0.3069 \pm 0.0050 \; \mathbf{(1.6\%)} }_{\textstyle \text{\green{DESI + CMB}}}
  • BAO constrains rd(Ωmh2,Ωbh2)h r_\mathrm{d}(\Omega_\mathrm{m} h^{2}, \Omega_\mathrm{b} h^{2}) h

Hubble constant

  • BAO constrains rd(Ωmh2,Ωbh2)h r_\mathrm{d}(\blue{\Omega_\mathrm{m}} h^{2}, \Omega_\mathrm{b} h^{2}) h
  • Ωm \blue{\Omega_\mathrm{m}} constrained by BAO at different zz

Hubble constant

  • BAO constrains rd(Ωmh2,Ωbh2)h r_\mathrm{d}(\blue{\Omega_\mathrm{m}} h^{2}, \orange{\Omega_\mathrm{b} h^{2}}) h
  • Ωm \blue{\Omega_\mathrm{m}} constrained by BAO at different zz
  • Ωbh2\orange{\Omega_\mathrm{b}h^2} can be constrained by light element abundance from Big Bang Nucleosynthesis (BBN): Schöneberg et al., 2024

Hubble constant

  • BAO constrains rd(Ωmh2,Ωbh2)h r_\mathrm{d}(\blue{\Omega_\mathrm{m}} h^{2}, \orange{\Omega_\mathrm{b} h^{2}}) h
  • Ωm \blue{\Omega_\mathrm{m}} constrained by BAO at different zz
  • Ωbh2\orange{\Omega_\mathrm{b}h^2} can be constrained by light element abundance from Big Bang Nucleosynthesis (BBN): Schöneberg et al., 2024

    \implies constraints on hh i.e. H0=100h  km/s/MpcH_0 = 100 h \; \mathrm{km} / \mathrm{s} / \mathrm{Mpc}

Hubble constant

H0=(68.53±0.80)kms1Mpc1DESI+BBN\underbrace{ H_0 = (68.53 \pm 0.80) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \text{BBN}}}
\underbrace{ H_0 = (68.53 \pm 0.80) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \text{BBN}}}

Hubble constant

H0=(68.52±0.62)kms1Mpc1DESI+θ+BBN\underbrace{ H_0 = (68.52 \pm 0.62) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \theta_\ast + \text{BBN}}}
\underbrace{ H_0 = (68.52 \pm 0.62) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \theta_\ast + \text{BBN}}}

θ\theta_\ast CMB angular acoustic scale

 

 

  • Consistency with SDSS
H0=(68.53±0.80)kms1Mpc1DESI+BBN\underbrace{ H_0 = (68.53 \pm 0.80) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \text{BBN}}}
\underbrace{ H_0 = (68.53 \pm 0.80) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \text{BBN}}}

Hubble constant

H0=(68.52±0.62)kms1Mpc1DESI+θ+BBN\underbrace{ H_0 = (68.52 \pm 0.62) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \theta_\ast + \text{BBN}}}
\underbrace{ H_0 = (68.52 \pm 0.62) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \theta_\ast + \text{BBN}}}

 

 

  • Consistency with SDSS
  • In agreement with CMB
H0=(68.53±0.80)kms1Mpc1DESI+BBN\underbrace{ H_0 = (68.53 \pm 0.80) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \text{BBN}}}
\underbrace{ H_0 = (68.53 \pm 0.80) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \text{BBN}}}

Hubble constant

H0=(68.52±0.62)kms1Mpc1DESI+θ+BBN\underbrace{ H_0 = (68.52 \pm 0.62) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \theta_\ast + \text{BBN}}}
\underbrace{ H_0 = (68.52 \pm 0.62) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \theta_\ast + \text{BBN}}}

 

 

  • Consistency with SDSS
  • In agreement with CMB
  • In 3.7σ3.7 \sigma tension with SH0ES
H0=(68.53±0.80)kms1Mpc1DESI+BBN\underbrace{ H_0 = (68.53 \pm 0.80) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \text{BBN}}}
\underbrace{ H_0 = (68.53 \pm 0.80) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \text{BBN}}}

Hubble constant

H0=(68.52±0.62)kms1Mpc1DESI+θ+BBN\underbrace{ H_0 = (68.52 \pm 0.62) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \theta_\ast + \text{BBN}}}
\underbrace{ H_0 = (68.52 \pm 0.62) \, {\rm km\,s^{-1}\,Mpc^{-1}} }_{\textstyle \color{darkblue}{\text{DESI} + \theta_\ast + \text{BBN}}}

DESI + CMB measurements favor a flat Universe

ΩK=0.0024±0.0016  (DESI+CMB)\Omega_\mathrm{K} = 0.0024 \pm 0.0016 \; \green{(\text{DESI} + \text{CMB})}
\Omega_\mathrm{K} = 0.0024 \pm 0.0016 \; \green{(\text{DESI} + \text{CMB})}

Spatial curvature

Dark Energy Equation of State

Dark Energy fluid, pressure pp, density ρ\rho

Equation of State parameter w=p/ρw = p / \rho

Linked to the evolution of Dark Energy w(z)=1+13dlnfDE(z)dln(1+z)w(z) = -1 + \frac{1}{3}\frac{d \ln f_\mathrm{DE}(z)}{d \ln (1 + z)}

Dark Energy Equation of State

Ωm=0.293±0.015(5.1%)w=0.990.13+0.15(15%)DESI\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.293 \pm 0.015 & \mathbf{(5.1\%)} \\ w &= -0.99^{+0.15}_{-0.13} & \mathbf{(15\%)} \end{align*}}_{\textstyle \text{\color{darkblue}{DESI}}}
\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.293 \pm 0.015 & \mathbf{(5.1\%)} \\ w &= -0.99^{+0.15}_{-0.13} & \mathbf{(15\%)} \end{align*}}_{\textstyle \text{\color{darkblue}{DESI}}}

Constant EoS parameter w=p/ρw = p / \rho

Λ\Lambda
\Lambda

Dark Energy Equation of State

Ωm=0.293±0.015(5.1%)w=0.990.13+0.15(15%)DESI\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.293 \pm 0.015 & \mathbf{(5.1\%)} \\ w &= -0.99^{+0.15}_{-0.13} & \mathbf{(15\%)} \end{align*}}_{\textstyle \text{\color{darkblue}{DESI}}}
\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.293 \pm 0.015 & \mathbf{(5.1\%)} \\ w &= -0.99^{+0.15}_{-0.13} & \mathbf{(15\%)} \end{align*}}_{\textstyle \text{\color{darkblue}{DESI}}}

Constant EoS parameter w=p/ρw = p / \rho

Dark Energy Equation of State

Ωm=0.293±0.015(5.1%)w=0.990.13+0.15(15%)DESI\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.293 \pm 0.015 & \mathbf{(5.1\%)} \\ w &= -0.99^{+0.15}_{-0.13} & \mathbf{(15\%)} \end{align*}}_{\textstyle \text{\color{darkblue}{DESI}}}
\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.293 \pm 0.015 & \mathbf{(5.1\%)} \\ w &= -0.99^{+0.15}_{-0.13} & \mathbf{(15\%)} \end{align*}}_{\textstyle \text{\color{darkblue}{DESI}}}

Constant EoS parameter w=p/ρw = p / \rho

Dark Energy Equation of State

Ωm=0.293±0.015(5.1%)w=0.990.13+0.15(15%)DESI\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.293 \pm 0.015 & \mathbf{(5.1\%)} \\ w &= -0.99^{+0.15}_{-0.13} & \mathbf{(15\%)} \end{align*}}_{\textstyle \text{\color{darkblue}{DESI}}}
\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.293 \pm 0.015 & \mathbf{(5.1\%)} \\ w &= -0.99^{+0.15}_{-0.13} & \mathbf{(15\%)} \end{align*}}_{\textstyle \text{\color{darkblue}{DESI}}}

Constant EoS parameter w=p/ρw = p / \rho

Dark Energy Equation of State

Ωm=0.293±0.015(5.1%)w=0.990.13+0.15(15%)DESI\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.293 \pm 0.015 & \mathbf{(5.1\%)} \\ w &= -0.99^{+0.15}_{-0.13} & \mathbf{(15\%)} \end{align*}}_{\textstyle \text{\color{darkblue}{DESI}}}
\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.293 \pm 0.015 & \mathbf{(5.1\%)} \\ w &= -0.99^{+0.15}_{-0.13} & \mathbf{(15\%)} \end{align*}}_{\textstyle \text{\color{darkblue}{DESI}}}

Constant EoS parameter w=p/ρw = p / \rho

Dark Energy Equation of State

Ωm=0.3095±0.0065(2.1%)w=0.997±0.025(2.5%)DESI + CMB + Pantheon+\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.3095 \pm 0.0065 & \mathbf{(2.1\%)} \\ w &= -0.997 \pm 0.025 & \mathbf{(2.5\%)} \end{align*}}_{\textstyle \text{\color{orange}{DESI + CMB + Pantheon+}}}
\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.3095 \pm 0.0065 & \mathbf{(2.1\%)} \\ w &= -0.997 \pm 0.025 & \mathbf{(2.5\%)} \end{align*}}_{\textstyle \text{\color{orange}{DESI + CMB + Pantheon+}}}

Assuming a constant EoS, DESI BAO fully compatible with a cosmological constant...

Ωm=0.293±0.015(5.1%)w=0.990.13+0.15(15%)DESI\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.293 \pm 0.015 & \mathbf{(5.1\%)} \\ w &= -0.99^{+0.15}_{-0.13} & \mathbf{(15\%)} \end{align*}}_{\textstyle \text{\color{darkblue}{DESI}}}
\underbrace{\begin{align*} \Omega_\mathrm{m} &= 0.293 \pm 0.015 & \mathbf{(5.1\%)} \\ w &= -0.99^{+0.15}_{-0.13} & \mathbf{(15\%)} \end{align*}}_{\textstyle \text{\color{darkblue}{DESI}}}

Constant EoS parameter w=p/ρw = p / \rho

w(z)=w0+z1+zwa(CPL)w(z) = w_{0} + \frac{z}{1 + z} w_{a} \qquad \text{(CPL)}
w(z) = w_{0} + \frac{z}{1 + z} w_{a} \qquad \text{(CPL)}
w0=0.550.21+0.39wa<1.32}DESI\left. \begin{align*} w_{0} &= -0.55^{+0.39}_{-0.21} \\ w_{a} &< -1.32 \end{align*} \right\rbrace {\text{\color{black}{DESI}}}
\left. \begin{align*} w_{0} &= -0.55^{+0.39}_{-0.21} \\ w_{a} &< -1.32 \end{align*} \right\rbrace {\text{\color{black}{DESI}}}

Dark Energy Equation of State

Varying EoS

Λ\Lambda
\Lambda

Dark Energy Equation of State

w0=0.450.21+0.34wa=1.791.00+0.48DESI + CMB        2.6σ\underbrace{ w_{0} = -0.45^{+0.34}_{-0.21} \qquad w_{a} = -1.79^{+0.48}_{-1.00} }_{\textstyle \purple{\text{DESI + CMB} \; \implies \; 2.6\sigma}}
\underbrace{ w_{0} = -0.45^{+0.34}_{-0.21} \qquad w_{a} = -1.79^{+0.48}_{-1.00} }_{\textstyle \purple{\text{DESI + CMB} \; \implies \; 2.6\sigma}}

Varying EoS

w(z)=w0+z1+zwa(CPL)w(z) = w_{0} + \frac{z}{1 + z} w_{a} \qquad \text{(CPL)}
w(z) = w_{0} + \frac{z}{1 + z} w_{a} \qquad \text{(CPL)}

Dark Energy Equation of State

w0=0.450.21+0.34wa=1.791.00+0.48DESI + CMB        2.6σ\underbrace{ w_{0} = -0.45^{+0.34}_{-0.21} \qquad w_{a} = -1.79^{+0.48}_{-1.00} }_{\textstyle \purple{\text{DESI + CMB} \; \implies \; 2.6\sigma}}
\underbrace{ w_{0} = -0.45^{+0.34}_{-0.21} \qquad w_{a} = -1.79^{+0.48}_{-1.00} }_{\textstyle \purple{\text{DESI + CMB} \; \implies \; 2.6\sigma}}

Varying EoS

w(z)=w0+z1+zwa(CPL)w(z) = w_{0} + \frac{z}{1 + z} w_{a} \qquad \text{(CPL)}
w(z) = w_{0} + \frac{z}{1 + z} w_{a} \qquad \text{(CPL)}

Dark Energy Equation of State

w0=0.450.21+0.34wa=1.791.00+0.48DESI + CMB        2.6σ\underbrace{ w_{0} = -0.45^{+0.34}_{-0.21} \qquad w_{a} = -1.79^{+0.48}_{-1.00} }_{\textstyle \purple{\text{DESI + CMB} \; \implies \; 2.6\sigma}}
\underbrace{ w_{0} = -0.45^{+0.34}_{-0.21} \qquad w_{a} = -1.79^{+0.48}_{-1.00} }_{\textstyle \purple{\text{DESI + CMB} \; \implies \; 2.6\sigma}}

Varying EoS

w(z)=w0+z1+zwa(CPL)w(z) = w_{0} + \frac{z}{1 + z} w_{a} \qquad \text{(CPL)}
w(z) = w_{0} + \frac{z}{1 + z} w_{a} \qquad \text{(CPL)}

Dark Energy Equation of State

w0=0.450.21+0.34wa=1.791.00+0.48DESI + CMB        2.6σ\underbrace{ w_{0} = -0.45^{+0.34}_{-0.21} \qquad w_{a} = -1.79^{+0.48}_{-1.00} }_{\textstyle \purple{\text{DESI + CMB} \; \implies \; 2.6\sigma}}
\underbrace{ w_{0} = -0.45^{+0.34}_{-0.21} \qquad w_{a} = -1.79^{+0.48}_{-1.00} }_{\textstyle \purple{\text{DESI + CMB} \; \implies \; 2.6\sigma}}

Varying EoS

w(z)=w0+z1+zwa(CPL)w(z) = w_{0} + \frac{z}{1 + z} w_{a} \qquad \text{(CPL)}
w(z) = w_{0} + \frac{z}{1 + z} w_{a} \qquad \text{(CPL)}

Dark Energy Equation of State

Combining all DESI + CMB + SN

w0=0.827±0.063wa=0.750.25+0.29DESI + CMB + Pantheon+        2.5σ\underbrace{ w_{0} = -0.827 \pm 0.063 \qquad w_{a} = -0.75^{+0.29}_{-0.25} }_{\textstyle \blue{\text{DESI + CMB + Pantheon+} \; \implies \; 2.5\sigma}}
\underbrace{ w_{0} = -0.827 \pm 0.063 \qquad w_{a} = -0.75^{+0.29}_{-0.25} }_{\textstyle \blue{\text{DESI + CMB + Pantheon+} \; \implies \; 2.5\sigma}}

Dark Energy Equation of State

Combining all DESI + CMB + SN

w0=0.827±0.063wa=0.750.25+0.29DESI + CMB + Pantheon+        2.5σ\underbrace{ w_{0} = -0.827 \pm 0.063 \qquad w_{a} = -0.75^{+0.29}_{-0.25} }_{\textstyle \blue{\text{DESI + CMB + Pantheon+} \; \implies \; 2.5\sigma}}
\underbrace{ w_{0} = -0.827 \pm 0.063 \qquad w_{a} = -0.75^{+0.29}_{-0.25} }_{\textstyle \blue{\text{DESI + CMB + Pantheon+} \; \implies \; 2.5\sigma}}
w0=0.64±0.11wa=1.270.34+0.40DESI + CMB + Union3        3.5σ\underbrace{ w_{0} = -0.64 \pm 0.11\qquad w_{a} = -1.27^{+0.40}_{-0.34} }_{\textstyle \color{orange}{\text{DESI + CMB + Union3} \; \implies \; 3.5\sigma}}
\underbrace{ w_{0} = -0.64 \pm 0.11\qquad w_{a} = -1.27^{+0.40}_{-0.34} }_{\textstyle \color{orange}{\text{DESI + CMB + Union3} \; \implies \; 3.5\sigma}}

Dark Energy Equation of State

Combining all DESI + CMB + SN

w0=0.827±0.063wa=0.750.25+0.29DESI + CMB + Pantheon+        2.5σ\underbrace{ w_{0} = -0.827 \pm 0.063 \qquad w_{a} = -0.75^{+0.29}_{-0.25} }_{\textstyle \blue{\text{DESI + CMB + Pantheon+} \; \implies \; 2.5\sigma}}
\underbrace{ w_{0} = -0.827 \pm 0.063 \qquad w_{a} = -0.75^{+0.29}_{-0.25} }_{\textstyle \blue{\text{DESI + CMB + Pantheon+} \; \implies \; 2.5\sigma}}
w0=0.64±0.11wa=1.270.34+0.40DESI + CMB + Union3        3.5σ\underbrace{ w_{0} = -0.64 \pm 0.11\qquad w_{a} = -1.27^{+0.40}_{-0.34} }_{\textstyle \color{orange}{\text{DESI + CMB + Union3} \; \implies \; 3.5\sigma}}
\underbrace{ w_{0} = -0.64 \pm 0.11\qquad w_{a} = -1.27^{+0.40}_{-0.34} }_{\textstyle \color{orange}{\text{DESI + CMB + Union3} \; \implies \; 3.5\sigma}}
w0=0.727±0.067wa=1.050.27+0.31DESI + CMB + DES-SN5YR        3.9σ\underbrace{ w_{0} = -0.727 \pm 0.067 \qquad w_{a} = -1.05^{+0.31}_{-0.27} }_{\textstyle \color{green}{\text{DESI + CMB + DES-SN5YR} \; \implies \; 3.9\sigma}}
\underbrace{ w_{0} = -0.727 \pm 0.067 \qquad w_{a} = -1.05^{+0.31}_{-0.27} }_{\textstyle \color{green}{\text{DESI + CMB + DES-SN5YR} \; \implies \; 3.9\sigma}}

Dark Energy Equation of State

Combining all DESI + CMB + SN

w0>1,wa<0w_{0} > -1, w_{a} < 0 favored, level varying on the SN dataset

w0=0.827±0.063wa=0.750.25+0.29DESI + CMB + Pantheon+        2.5σ\underbrace{ w_{0} = -0.827 \pm 0.063 \qquad w_{a} = -0.75^{+0.29}_{-0.25} }_{\textstyle \blue{\text{DESI + CMB + Pantheon+} \; \implies \; 2.5\sigma}}
\underbrace{ w_{0} = -0.827 \pm 0.063 \qquad w_{a} = -0.75^{+0.29}_{-0.25} }_{\textstyle \blue{\text{DESI + CMB + Pantheon+} \; \implies \; 2.5\sigma}}
w0=0.64±0.11wa=1.270.34+0.40DESI + CMB + Union3        3.5σ\underbrace{ w_{0} = -0.64 \pm 0.11\qquad w_{a} = -1.27^{+0.40}_{-0.34} }_{\textstyle \color{orange}{\text{DESI + CMB + Union3} \; \implies \; 3.5\sigma}}
\underbrace{ w_{0} = -0.64 \pm 0.11\qquad w_{a} = -1.27^{+0.40}_{-0.34} }_{\textstyle \color{orange}{\text{DESI + CMB + Union3} \; \implies \; 3.5\sigma}}
w0=0.727±0.067wa=1.050.27+0.31DESI + CMB + DES-SN5YR        3.9σ\underbrace{ w_{0} = -0.727 \pm 0.067 \qquad w_{a} = -1.05^{+0.31}_{-0.27} }_{\textstyle \color{green}{\text{DESI + CMB + DES-SN5YR} \; \implies \; 3.9\sigma}}
\underbrace{ w_{0} = -0.727 \pm 0.067 \qquad w_{a} = -1.05^{+0.31}_{-0.27} }_{\textstyle \color{green}{\text{DESI + CMB + DES-SN5YR} \; \implies \; 3.9\sigma}}

Sum of neutrino masses

Internal CMB degeneracies limiting precision on the sum of neutrino masses

Sum of neutrino masses

Internal CMB degeneracies limiting precision on the sum of neutrino masses

Broken by BAO, especially through H0H_{0}

Low preferred value of H0H_{0} yields

mν<0.072eV  (95%,DESI + CMB)\sum m_\nu < 0.072 \, \mathrm{eV} \; (95\%, \color{green}{\text{DESI + CMB})}

Limit relaxed for extensions to ΛCDM\Lambda\mathrm{CDM}

mν<0.195eV\sum m_\nu < 0.195 \, \mathrm{eV} for w0waCDMw_0w_a\mathrm{CDM}

Neutrino mass hierarchies

mν<0.113eV  (95%,DESI + CMB)\sum m_\nu < 0.113 \, \mathrm{eV} \; (95\%, \color{green}{\text{DESI + CMB})}
\sum m_\nu < 0.113 \, \mathrm{eV} \; (95\%, \color{green}{\text{DESI + CMB})}

With >0.059eV> 0.059 \, \mathrm{eV} prior (NH)

Neutrino mass hierarchies

mν<0.113eV  (95%,DESI + CMB)\sum m_\nu < 0.113 \, \mathrm{eV} \; (95\%, \color{green}{\text{DESI + CMB})}
\sum m_\nu < 0.113 \, \mathrm{eV} \; (95\%, \color{green}{\text{DESI + CMB})}
mν<0.145eV  (95%,DESI + CMB)\sum m_\nu < 0.145 \, \mathrm{eV} \; (95\%, \color{green}{\text{DESI + CMB})}
\sum m_\nu < 0.145 \, \mathrm{eV} \; (95\%, \color{green}{\text{DESI + CMB})}

With >0.059eV> 0.059 \, \mathrm{eV} prior (NH)

With >0.1eV> 0.1 \, \mathrm{eV} prior (IH)

Neutrino mass hierarchies

mν<0.113eV  (95%,DESI + CMB)\sum m_\nu < 0.113 \, \mathrm{eV} \; (95\%, \color{green}{\text{DESI + CMB})}
\sum m_\nu < 0.113 \, \mathrm{eV} \; (95\%, \color{green}{\text{DESI + CMB})}
mν<0.145eV  (95%,DESI + CMB)\sum m_\nu < 0.145 \, \mathrm{eV} \; (95\%, \color{green}{\text{DESI + CMB})}
\sum m_\nu < 0.145 \, \mathrm{eV} \; (95\%, \color{green}{\text{DESI + CMB})}

With >0.059eV> 0.059 \, \mathrm{eV} prior (NH)

With >0.1eV> 0.1 \, \mathrm{eV} prior (IH)

Current constraints do not strongly favor normal over inverted hierarchy (2σ\simeq 2 \sigma)

Summary

DESI already has the most precise BAO measurements ever

Summary

DESI already has the most precise BAO measurements ever

 

DESI BAO is consistent (at the 1.9σ\sim 1.9\sigma level) with CMB in flat ΛCDM

Summary

DESI already has the most precise BAO measurements ever

 

DESI BAO is consistent (at the 1.9σ\sim 1.9\sigma level) with CMB in flat ΛCDM

 

In flat ΛCDM, DESI prefers "small Ωm\Omega_\mathrm{m}, large H0H_0 (though 3.7σ3.7\sigma away from SH0ES), small mν\sum m_\nu"

Summary

DESI already has the most precise BAO measurements ever

 

DESI BAO is consistent (at the 1.9σ\sim 1.9\sigma level) with CMB in flat ΛCDM

 

In flat ΛCDM, DESI prefers "small Ωm\Omega_\mathrm{m}, large H0H_0 (though 3.7σ3.7\sigma away from SH0ES), small mν\sum m_\nu"

 

Some hint of time-varying Dark Energy equation of state especially when combined with supernovae measurements

What's next?

"Full shape" (not only BAO peak measurement) analysis

 

Y3 data on disk!

The Pipeline

All codes public

The Pipeline

All codes public

desilike

- BAO, full shape likelihoods, designed to extend to other observables (lensing, etc.)

- wraps PT codes: velocileptors, pybird, folps(ax)

- automated cobaya / cosmosis / montepython bindings

- wraps samplers, profilers, fisher, in-place emulation

- "JAXification"

template = DirectPowerSpectrumTemplate(z=1.)
theory = LPTVelocileptorsTracerPowerSpectrumMultipoles(ells=(0, 2, 4), template=template)
theory(h=0.7, b1p=1.2)  # returns pk
observable = TracerPowerSpectrumMultipoles(data=data, wmatrix=wmatrix, theory=theory,
										   klim={0: (0.02, 0.2), 2: (0.02, 0.2)})
likelihood = ObservablesGaussianLikelihood(observables=observable)
likelihood(Omega_m=0.3)  # returns log-posterior

Other datasets

mν\sum m_\nu

credit: Christophe Yèche

w(z)w(z)

DESI - SDSS consistency (Ωm\Omega_\mathrm{m})

Perfectly consistent!

Using these 2 points alone moves Ωm\Omega_\mathrm{m} by <2σ< 2 \sigma

Are SN Ωm\Omega_\mathrm{m} consistent?

Not so much in flat ΛCDM\Lambda\mathrm{CDM}...

(so we do not combine them in this model!)

Are SN Ωm\Omega_\mathrm{m} consistent?

Consistent in w0waCDMw_0w_a\mathrm{CDM}!

plik vs PR4 Planck likelihoods

Appendix B

w0waw_0 - w_a with mν\sum m_\nu free

w0waw_0 - w_a with ΩK\Omega_\mathrm{K}

Preference for w0>1,wa<0w_{0} > -1, w_{a} < 0 persists when curvature is left free

DE constraints driven by low-zz ?

Not that much!

 

DESI + SDSS swaps DESI measurements with SDSS for z<0.6z < 0.6

 

0.4σ- 0.4 \sigma compared to DESI only

w(z)w(z)

Dark energy equation of state:

P=wρP = w \rho

  • ww = constant

BAO measurements: dark energy

Dark energy equation of state:

P=wρP = w \rho

  • CPL parameterization: w(a)=w0+(1a)waw(a) = w_0 + (1 - a) w_a

BAO measurements: dark energy

Full tables

Full tables

Full tables

Full tables