Jarred Green
Geneva, ICRC 2025
20 August 2025
Max Planck Institute for Physics
jgreen@mpp.mpg.de
Jarred Green - jgreen@mpp.mpg.de
Jarred Green - jgreen@mpp.mpg.de
{
'size': 546.8863769783503,
'xc': -3.7898364035228065,
'yc': 7.294274369102854,
'length': 7.767692666363586,
'width': 1.7648053936769377,
'delta': -0.5687518727314761,
...
}
tl;dr
ML
tl;dr
Why Deep Learning?
Jarred Green - jgreen@mpp.mpg.de
A way to include as much information as possible?
Jarred Green - jgreen@mpp.mpg.de
Proton
Gamma
Muon
Find a new ways to represent 'raw' data
Why waveform data?
Jarred Green - jgreen@mpp.mpg.de
Jarred Green - jgreen@mpp.mpg.de
Lets go from images
to graphs
Credit: J. Leskovec (Stanford CS224)
Graphs can effectively deal with:
Jarred Green - jgreen@mpp.mpg.de
Why Graphs?
Jarred Green - jgreen@mpp.mpg.de
time
Jarred Green - jgreen@mpp.mpg.de
time
Can we make these graphs smaller somehow?
cleaning!
Jarred Green - jgreen@mpp.mpg.de
Goal: get calibrated data with timing information
Python package magic-gnn
.parquet or LMDB files exported, about ~1GB / min of data
Python package magic-gnn
GNN with
calibrated graphs
1️⃣
Transformers
+ GNNs
2️⃣
Jarred Green - jgreen@mpp.mpg.de
Training Data:
Jarred Green - jgreen@mpp.mpg.de
✅ Particle ID classification
Model:
GNN with
calibrated graphs
1️⃣
Jarred Green - jgreen@mpp.mpg.de
✅ Direction reconstruction
In progress:
chatbots 🤖
MC 68% containment < 0.08deg
Transformers
+ GNNs
2️⃣
Jarred Green - jgreen@mpp.mpg.de
Deep Learning
Fast analysis with GPUs
Deep models can handle multiple analysis settings
Graph Networks
Waveform Data
Jarred Green - jgreen@mpp.mpg.de
Credit: G. Ceribella