1X Robotics, August 2023
Robot Locomotion Group, MIT
Complex planning problem:
Task-specific hardware
\( \rightarrow \) Not dexterous manipulation
Learning-based methods
\( \rightarrow \) Hard to generalize
Planning algorithms:
[1] T. Pang, H. J. T. Suh, L. Yang, and R. Tedrake, “Global Planning for Contact-Rich Manipulation via Local Smoothing of Quasi-dynamic Contact Models.” arXiv, Jun. 21, 2022
[1]
\( \rightarrow \) Several pros and cons
\( \rightarrow \) No known (general) satisfactory solution
\(\leftarrow\) Toy-problem we will tackle
Preliminary results: Planar Pushing
Characteristics of the problem:
\( \tilde{f}_1 \) and \(\tilde{f}_2\) are simple examples of convex relaxations
[2] T. Marcucci, J. Umenberger, P. A. Parrilo, and R. Tedrake, “Shortest Paths in Graphs of Convex Sets.” arXiv, Sep. 21, 2022.
[3] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion Planning around Obstacles with Convex Optimization.” arXiv, May 09, 2022.
[2]
[2] T. Marcucci, J. Umenberger, P. A. Parrilo, and R. Tedrake, “Shortest Paths in Graphs of Convex Sets.” arXiv, Sep. 21, 2022.
[3] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion Planning around Obstacles with Convex Optimization.” arXiv, May 09, 2022.
[2]
[1] T. Marcucci, J. Umenberger, P. A. Parrilo, and R. Tedrake, “Shortest Paths in Graphs of Convex Sets.” 2022.
[2] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion Planning around Obstacles with Convex Optimization.” 2022.
\( \longrightarrow \)
\( X := xx^\intercal \)
Hope: Convex relaxation contains enough information to take the right high-level decisions
Seems to be the case!
The method generalizes to general dexterous manipulation!