Robot Locomotion Group, MIT
Short Talk, Spring 2023
Decision variables
[1] T. Marcucci, J. Umenberger, P. A. Parrilo, and R. Tedrake, “Shortest Paths in Graphs of Convex Sets.” 2022.
[2] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, “Motion Planning around Obstacles with Convex Optimization.” 2022.
Two types of vertex sets \( \mathcal{X}_v \)
1. Non-collision modes \( \mathcal{R}_j \)
[1] N. Chavan-Dafle, R. Holladay, and A. Rodriguez, “Planar in-hand manipulation via motion cones,” Mar. 2020
[2] F. R. Hogan, E. R. Grau, and A. Rodriguez, “Reactive Planar Manipulation with Convex Hybrid MPC,” 2018
2. Contact with face \( \mathcal{C}_i \)
[1] N. Chavan-Dafle, R. Holladay, and A. Rodriguez, “Planar in-hand manipulation via motion cones,” Mar. 2020
[2] F. R. Hogan, E. R. Grau, and A. Rodriguez, “Reactive Planar Manipulation with Convex Hybrid MPC,” 2018
\( \leftarrow \) Quadratic (non-convex) in \( x_k, u_k \)
2. Contact with face \( \mathcal{C}_i \)
2. Contact with face \( \mathcal{F}_i \)
\( \longrightarrow \)
\( X := xx^\intercal \)
[1] N. Chavan-Dafle, R. Holladay, and A. Rodriguez, “Planar in-hand manipulation via motion cones,” Mar. 2020
\( f_{max}, \tau_{max} \) = Maximum frictional force/torque from table
2. Contact with face \( \mathcal{C}_i \)