Short Talk, RLG MIT
February 23rd 2024
Bernhard Paus Graesdal
Sticking: \( | \lambda_f | \leq \mu \lambda_n \) and \( v_{\text{rel}} = 0\)
Sliding: \( | \lambda_f | = \mu \lambda_n \) and \( |v_{\text{rel}} | \geq 0\)
Sticking: \( | \lambda_f | \leq \mu \lambda_n \) and \( v_{\text{rel}} = 0\)
Sliding: \( | \lambda_f | = \mu \lambda_n \) and \( v_{\text{rel}} \geq 0\)
J. C. Trinkle, S. Berard, and J. S. Pang, “A time-stepping scheme for quasistatic multibody systems,” 2005 (ISAPT)
T. Pang and R. Tedrake, “A Robust Time-Stepping Scheme for Quasistatic Rigid Multibody Systems,” in 2018 (IROS)
J. C. Trinkle, S. Berard, and J. S. Pang, “A time-stepping scheme for quasistatic multibody systems,” 2005 (ISAPT)
T. Pang and R. Tedrake, “A Robust Time-Stepping Scheme for Quasistatic Rigid Multibody Systems,” in 2018 (IROS)
Quadratic equality constraints can be formulated as:
where \(Q_i\) possibly indefinite, hence problem is nonconvex
Lift the problem:
\( x \in \R^n \rightarrow (x, X) \in \R^n \times \mathbb{S}^{n \times n}\)
Equivalent when \( \text{rank}(X) = 1 \iff X = x x^\intercal \)
Otherwise a convex relaxation
\( \longrightarrow \)
\( X := xx^\intercal \)
Looks promising, but more experimentation and analysis is needed!