Kalman Filtering

for GNSS Receiver Tracking Loops for Scintillating Signals

Scintillation

  • amplitude fading
    • degrades CN0
  • phase fluctuations
    • induces cycle slips and/or loss-of-lock

Why Kalman Filter?

  • minimize mean-squared phase error
  • can adapt over gradual changes in signal characteristics

Disadvantage

  • degrades or diverges under abrupt changes in signal characteristics

Steps to Kalman Filter

  • Observation Matrix
  • System Model
  • Noise Model (Covariance Matrix)
  • Filter Output
A = M\vec{x}
A=Mx
\text{signal}_k\star \text{ref}_k = ADC(n T_s + \tau_k)C(n T_s+\hat{\tau_k}) e^{j\left[2\pi(f_{d_k} - \hat{f_{d_k}})n T_s + \phi_k - \hat{\phi}_k\right]} + \eta(nT_s)
signalkrefk=ADC(nTs+τk)C(nTs+τk^)ej[2π(fdkfdk^)nTs+ϕkϕ^k]+η(nTs)

correlation output at        block

k^{th}
kth
\approx ADR(\Delta\tau) N\text{sinc}(2\pi\Delta f_d T_I)\exp(j2\pi \Delta f_{d_k} \frac{T_I - T_s}{2})\exp(j\Delta\phi_k)
ADR(Δτ)Nsinc(2πΔfdTI)exp(j2πΔfdk2TITs)exp(jΔϕk)
\eta(n T_s)
η(nTs)

for fine acq., add and subtract adjacent overlapping blocks to cancel noise? investigate, but probs no b/c mult by signal means diff noise

is zero-mean white noise with variance

\sigma_n^2 = P_n = \frac{P_s}{10^{\frac{C/N_0}{10}}}
σn2=Pn=1010C/N0Ps

The End