Deep Fades
Brian Breitsch
12 January 2018
Weekly Seminar:
\hat{x}(t) = x(t) + \tilde{x}(t)
x
^
(
t
)
=
x
(
t
)
+
x
~
(
t
)
\hat{x}(t) = x(t) + \tilde{x}(t)
x
^
(
t
)
=
x
(
t
)
+
x
~
(
t
)
= \frac{1}{2} A(t) \exp\left( i \phi(t) \right) \left[ 1 + \frac{\tilde{A}(t)}{A(t)} \exp\left( i \left( \tilde{\phi}(t) - \phi(t) \right) \right) \right]
=
1
2
A
(
t
)
exp
(
i
ϕ
(
t
)
)
[
1
+
A
~
(
t
)
A
(
t
)
exp
(
i
(
ϕ
~
(
t
)
−
ϕ
(
t
)
)
)
]
= \frac{1}{2} A(t) \exp\left( i \phi(t) \right) \left[ 1 + \frac{\tilde{A}(t)}{A(t)} \exp\left( i \left( \tilde{\phi}(t) - \phi(t) \right) \right) \right]
=
2
1
A
(
t
)
exp
(
i
ϕ
(
t
)
)
[
1
+
A
(
t
)
A
~
(
t
)
exp
(
i
(
ϕ
~
(
t
)
−
ϕ
(
t
)
)
)
]
= \frac{1}{2} A(t) \exp\left( i \phi(t) \right) + \frac{1}{2} \tilde{A}(t) \exp\left( i \tilde{\phi}(t) \right)
=
1
2
A
(
t
)
exp
(
i
ϕ
(
t
)
)
+
1
2
A
~
(
t
)
exp
(
i
ϕ
~
(
t
)
)
= \frac{1}{2} A(t) \exp\left( i \phi(t) \right) + \frac{1}{2} \tilde{A}(t) \exp\left( i \tilde{\phi}(t) \right)
=
2
1
A
(
t
)
exp
(
i
ϕ
(
t
)
)
+
2
1
A
~
(
t
)
exp
(
i
ϕ
~
(
t
)
)
= \frac{1}{2} A(t) \exp\left( i \phi(t) \right) \left[ 1 + \alpha \exp\left( i \Delta \phi \right) \right]
=
1
2
A
(
t
)
exp
(
i
ϕ
(
t
)
)
[
1
+
α
exp
(
i
Δ
ϕ
)
]
= \frac{1}{2} A(t) \exp\left( i \phi(t) \right) \left[ 1 + \alpha \exp\left( i \Delta \phi \right) \right]
=
2
1
A
(
t
)
exp
(
i
ϕ
(
t
)
)
[
1
+
α
exp
(
i
Δ
ϕ
)
]
x(t) = \frac{1}{2} A(t) \exp\left( i \phi(t) \right)
x
(
t
)
=
1
2
A
(
t
)
exp
(
i
ϕ
(
t
)
)
x(t) = \frac{1}{2} A(t) \exp\left( i \phi(t) \right)
x
(
t
)
=
2
1
A
(
t
)
exp
(
i
ϕ
(
t
)
)
BASEBAND
COMPLEX MODULATION
ORIGINAL SIGNAL