Big Data Cosmology meets AI

IAIFI Fellow

Carol Cuesta-Lazaro

 

KIPAC - 6th May 2024

Video Credit: N-body simulation Francisco Villaescusa-Navarro

The era of Big Data Cosmology

1-Dimensional

Machine Learning

Secondary anisotropies

Galaxy formation

Intrinsic alignments

Dust

xAstrophysics

DESI, DESI-II, Spec-S5

Euclid

LSST

Simons Observatory

CMB-S4

Ligo

Einstein

LSST

Early Universe Inflation

{\delta_\mathrm{Initial}}

Late Universe

Energy and matter content

Evolution

{\delta_\mathrm{Final}}
\color{darkgray}{\Omega_m}

Dark matter

Dark energy

\color{darkgreen}{w_0, w_a}
\color{darkolive}{H_0}

Hubble Constant

\color{darkred}{\Omega_b}
\color{darkblue}{\sum m_\nu}

Baryons

Neutrino masses

\color{purple}{f_\mathrm{NL}}
\color{darkorange}{n_s}

Non-Gaussianity

Tilt power spectrum

Hubble tension

Beyond the Standard Model

Multifield Inflation

2
3

Hybrid ML - Physics Simulators

Unsupervised searches

1

Cosmological (field level) Inference for Galaxy Surveys

DESI

High dimensional data 

x

Unknown

p(x|\mathcal{C})

Simple summary statistic 

s
p(s|\mathcal{C})

estimated with Perturbation Theory

Probability pair of galaxy

Pair separation

\theta

Forward Model

Parameters

Observable

x

Likelihood

p(\mathcal{\theta}|x)

Simulator

+ MCMC hammer

\color{darkgray}{\Omega_m}, \color{darkgreen}{w_0, w_a},\color{purple}{f_\mathrm{NL}}\, ...

Dark matter

Dark energy

Inflation

Perturbation Theory

Pen and paper

p(x|\mathcal{\theta})

+ Density Estimation

+ Sampler

p(\mathcal{\theta}|x) =
p(\theta) / p(x)

Density Split

Wavelet Scattering Transform

Moment generating functionals

Void-Galaxy cross correlation

N-point functions

Minkowski functionals

Credit: Alternative Clustering Methods. Enrique Paillas, Wei Liu, Mathilde Pinon, Gillian Beltz-Mohrmann, Georgios Valogiannis)

A forward model samples the likelihood

\theta

Parameters

Observable

x

Observed galaxy pointcloud

DESI

Forward Model

\color{darkgray}{\Omega_m}, \color{darkgreen}{w_0, w_a},\color{purple}{f_\mathrm{NL}}\, ...

Dark matter

Dark energy

Inflation

p(x|\theta) = \int dz p(x,z|\theta)

A 2D animation of a folk music band composed of anthropomorphic autumn leaves, each playing traditional bluegrass instruments, amidst a rustic forest setting dappled with the soft light of a harvest moon

Image credit: DALL·E 3 

 

1024x1024

p(x|\mathcal{C})?
"A point cloud approach to generative modeling for galaxy surveys at the field level" 
Cuesta-Lazaro and Mishra-Sharma 

arXiv:2311.17141

Base Distribution

Target Distribution

  • Sample
  • Evaluate

Siddharth Mishra-Sharma

Fixed Initial Conditions

 Varying Cosmology

Mean pairwise

velocity

k Nearest neighbours

Pair separation

Pair separation

Trained on only 5000 positions!

Learning in 5000 dimensions with only 2000 simulations

Nayantara Mudur

"Diffusion-HMC: Parameter Inference with Diffusion Model driven Hamiltonian Monte Carlo" 
Mudur, Cuesta-Lazaro and Finkbeiner

in prep

p(\delta_m|\Omega_m, \sigma_8)

CNN

Diffusion

Increasing Noise

p(\sigma_8|\delta_m)
p(\sigma_8|\delta_m + 0.01 \epsilon)
p(\sigma_8|\delta_m + 0.02 \epsilon)
"Your diffusion model is secretly a certifiably robust classifier" 
Chen et al

arXiv:2402.02316

p_\phi(\delta_\mathrm{z=127}|\delta_\mathrm{z=0})

1 to Many:

1 \mathrm{Gpc}/h
arXiv:2312.09271
arXiv:2307.09504 
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482

Stochastic Interpolants: Bridging arbitrary densities

"Stochastic Interpolants: A Unifying Framework for Flows and Diffusions" 
Albergo, Boffi, Vanden-Eijnden

arXiv:2303.08797

x_1
x_0
\frac{d x_t}{dt} = u_t(x_t)

Flow ODE

x_0
p(x_0)
p(x_1)
x_1
u_t
\frac{d p_t}{dt} = - \left(\nabla u_t p_t \right)(x_t)

Continuity Equation

Regress the velocity field

L_\mathrm{FM} = \mathrm{min} \, \mathbb{E}_{t, p_t(x|x_0)} \left |\left| v^\theta_t(x|x_0) - u_t(x|x_0) \right|\right|^2

Unknown!

x_t = (1 - t) x_0 + t x_1
p_t(x|x_0)
p_0(x|x_0) = \delta_{x_0}
p_1(x|x_0) = p

Boundary Conditions

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482

Stochastic Interpolants: Bridging arbitrary densities

"Stochastic Interpolants: A Unifying Framework for Flows and Diffusions" 
Albergo, Boffi, Vanden-Eijnden

arXiv:2303.08797

x_t = (1 - t) x_0 + t z
x_0
x_1
x_t = (1 - t) x_0 + t x_1
x_t = (1 - t) x_0 + t x_1 + \sqrt{2t (1-t)z}

Power Spectrum

Cross correlation

Small

Large

Scale (k)

Small

Large

Scale (k)

Small

Large

Scale (k)

Small

Large

Scale (k)

Can we run larger simulations? (DESI volumes)

At high resolution?

Faster?

All this works depends on simulations, but...

Thousands of them?

Hybrid Physical / ML simulators

\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} a } = \frac{1}{a^3 E(a)}\mathbf{v}
\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} a } = \frac{1}{a^2 E(a)}\mathbf{F}(\mathbf{x},a)
\mathbf{F}(\mathbf{x},a) = \frac{3 \Omega_m}{2} \nabla \phi^\mathrm{PM}(\mathbf{x})

Gravitational evolution ODE

Particle-mesh

"Nbodyify: Adaptive mesh corrections for PM simulations" Cuesta-Lazaro, Modi in preps

Particle-mesh

Full Nbody

\mathbf{F}_\theta(\mathbf{x},a) = \frac{3 \Omega_m}{2} \nabla \left[\phi^\mathrm{PM}(\mathbf{x}) + \phi^\mathrm{corr}_\theta(\mathbf{x}, a, \phi^\mathrm{PM}, \delta^\mathrm{PM}) \right]

Hybrid Simulator - on the fly

\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} a } = \frac{1}{a^3 E(a)}\mathbf{v}
\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} a } = \frac{1}{a^2 E(a)}\mathbf{F}(\mathbf{x},a)

Gravitational evolution ODE

Trained to match particle velocities and positions: DIFFERENTIABLE

\mathcal{L} = \sum_t \left(x_t^{\rm pred} - x_t^{\rm HR}\right)^2
\delta_\mathrm{LR}
\phi_\mathrm{LR}

Density

Gravitational Potential

1. CNN

2. Read features at position using attention

\mathbf{F}_\theta(\mathbf{x},a) = f_\theta(h_\theta(\mathbf{x}), a)

3. Compute force correction

4. Run corrected simulation

Learn features

h_\theta(\mathbf{x})
h

Particle-mesh

Full Nbody

Hybrid ML-Simulator

"Nbodyify: Adaptive mesh corrections for PM simulations" Cuesta-Lazaro, Modi in preps

Gravitational potential

Particle velocities

 ~ Gpc

pc

kpc

Mpc

Gpc

Video credit: Francisco Villaescusa-Navarro

Gas density

Gas temperature

Are there problems in cosmology that bypass a forward model?

Parity violation cannot be originated by gravity

7 \sigma
x
\mathrm{Mirror}(x)
"Measurements of parity-odd modes in the large-scale 4-point function of SDSS..." 
Hou, Slepian, Chan arXiv:2206.03625
?
1 \sigma
"Could sample variance be responsible for the parity-violating signal seen in the BOSS galaxy survey?"
 Philcox, Ereza arXiv:2401.09523
x
\mathrm{Mirror}(x)
\mathrm{max} \, \left( f_\theta(x) - f_\theta(\mathrm{Mirror}(x)) \right)

Matthew Craigie

Peter Taylor

Yuan-Sen Ting

Pre-defined filters

No symmetries

Learned filters + symmetries

Train

Test

Me: I can't wait to work with observations

Me working with observations:

Conclusions

1. There is a lot of information in galaxy surveys that ML methods can access

2. We can tackle high dimensional inference problems so far unatainable

3. Our ability to simulate will limit the amount of information we can extract

Hybrid simulators, forward models, robustness

Unsupervised problems: parity violation

Dark matter density reconstruction, Initial Conditions, let's get creative!

Field level inference