Gas density
Gas tracer density
Filamentary accretion is responsible for most of the mass and angular momentum acquisition (at z>3 ; Kereš+05, Pichon+11, Tillson+12, …)
Filamentary accretion: natural "bridge" between large scale structures (cosmic web) and galaxy formation
3. Contribution to disk formation
1. AM acquisition at large scale
2. Transport along cold flows
( \( \forall t, T(t)\leq 10⁵\ \mathrm{K} \) and
\( 0.3 R_\mathrm{vir} \leq r(t) \leq 2 R_\mathrm{vir} \))
or
$$ r < 0.3 R_\mathrm{vir} \text{ or } r > 2R_\mathrm{vir} $$
$$ \exists t, T(t)> 10⁵\ \mathrm{K} \\ 0.3 R_\mathrm{vir} \leq r(t)\leq 2 R_\mathrm{vir} $$
⇒ Defined with Lagrangian history
+ removing accretion from satellites
Cold gas: well aligned down to inner halo
Hot gas: aligned down to inner halo
The (Lagrangian) spAM dynamics is given by
\(\displaystyle \phantom{\frac{\mathrm{d} \mathbf{l}}{\mathrm{d} t}} + \text{gravitational torques} \)
\( \displaystyle \frac{\mathrm{d} \mathbf{l}}{\mathrm{d} t} = \textcolor{darksalmon}{\text{pressure torque}} \)
\(\displaystyle \phantom{\frac{\mathrm{d} \mathbf{l}}{\mathrm{d} t} + } \underbrace{\phantom{\text{gravitational torques}}}_{\text{\textcolor{darkgray}{DM} + \textcolor{orange}{Star} + \textcolor{deepskyblue}{Gas}}} \)
Pressure dominates the ⊥ acceleration in CGM…
locally!
Mean of ⊥ force magnitude
Compute global torque in shell
Locally: pressure dominated...
esp. in the hot phase
... but globally: (DM) gravity dominated
esp. in the cold phase
What is happening?
Compute \(t_\mathrm{decorr.}\) using Lagrangian history such that
$$ \vec{\tau}(t_\mathrm{decorr.}) \perp \vec{\tau}(0) \color{gray}\qquad\text{ (i.e. } \vec{\tau}(t_\mathrm{decorr.}) \cdot \vec{\tau}(0) = 0)$$
A/ Longer coherence in cold phase (esp. pressure)
Slow decorrelation
Fast decorrelation
Compute sum-of-norm vs norm-of-sum
$$ \dfrac{\left\| \sum_\text{neigh}\tau\right\|}{ \sum_\text{neigh}\left\| \tau\right\|} $$
B/ Pressure: \(\lambda_\mathrm{fluct.}\) is small
Compute sum-of-norm vs norm-of-sum
$$ \dfrac{\left\| \sum_\text{neigh}\tau\right\|}{ \sum_\text{neigh}\left\| \tau\right\|} $$
B/ Pressure: \(\lambda_\mathrm{fluct.}\) is small
Eulerian method
Lagrangian method
Lagrangian method
Using linear interpolation of velocity
\[p_{i,j} \propto \mathrm{flux}(i\rightarrow j)\]
Bonus: also work for SF, feedback, etc.!
Density \(\rho\)
\(v\) tracers
MC tracers
Difference \(\Delta \rho / \rho\)
Formation & destruction of filamentary structures in Perseus-like cluster
Tracer: history of each clump
Beckmann+19
Study of gas in & out — origin of Ly\(\alpha\) emitting gas
Mitchell+20