Corentin Cadiou
CNRS @ IAP, Paris
Co-Is: Harley Katz, Martin Rey
Collaborators: Oscar Agertz, Jeremy Blaizot, Alex J. Cameron, Nicholas Choustikov, Julien Devriendt, Uliana Hauk, Gareth Jones, Taysun Kimm, Isaac Laseter, Aayush Saxena, Sergio Martin-Alvarez, Kosei Matsumoto, Camilla T. Nyhagen, Autumn Pearce, Francisco Rodriguez-Montero, Victor Rufo-Pastor, Joki Rosdahl, Adrianne Slyz, Richard Stiskalek, Anatole Storck, Wonjae Yee
What is setting the structure in the CGM?
Can we reproduce the diversity of high-\(z\) spectra?
Observational prospects of Pop. III stars?
Bridge high-\(z\) JWST/ALMA to Gaia?
[…]
Harikane+24
Cullen+24
Cameron+24
Lots of assumptions
(equilibrium, geometry, element abundances, …)
\(\rho, T, Z,v\)
sometimes \(n_\mathrm{H}, n_{\mathrm{H^+}}, n_\mathrm{He}, n_\mathrm{He^+},n_\mathrm{He^{2+}},n_\mathrm{e^{-}}\)
Physical space
Observable
Megatron suite of simulations
\(\Sigma\)HI
\(\Sigma\)HII
\(\Sigma\)MgII
\(\Sigma\)OII
Mocks in absorption:
Main object, \(z=4\), raw file outputs, no postprocessing
Mocks in emission:
Main object, \(z=9\), w/ nebular cont. Pyneb (Luridiana+15) & coll. Chianti (Del Zanna+21)
4 High-z ISM
4 High-z ISM
3+1 "low"-z CGM
Is the CGM in equilibrium?
Relax to photo-ionisation equilibrium (PIE)
No local radiation field, no time-dependence, assume \(n_\mathrm{e}\) dominated by primordial species, self-shielding
\[\frac{\mathrm{d}n_i}{\mathrm{d}t} = 0 = \text{Recomb} + \text{Collisional} + \text{UVB}\]
Is the CGM in equilibrium?
Is the CGM in equilibrium?
Is the CGM in equilibrium?
NEq.
PIE
Assuming PIE ⇒ biased towards colder/denser gas
\(T\)
\(n_\mathrm{H}\)
Is the CGM in equilibrium?
\(\pm0.5\,\mathrm{dex}\)
Is the CGM in equilibrium?
Non-equilibrium effects:
\(\Delta(T, n_\mathrm{H}) \sim 0.2-0.5\,\mathrm{dex}\)
⇒ \(\Delta L \sim 1\,\mathrm{dex}\)
for some lines
CGM out of equilibrium: why?
40 kpc
CGM out of equilibrium: why?
A. Storck
At least 2dex gap to observe Pop. III haloes
On their observability at high-\(z\)
Not observable (unless really lucky with a lens)
Not close to UV-bright galaxies (6/10,000 form within \(R_\mathrm{vir}\))
A. Storck
\(z=8\) sim
\(z=0\) data
Excellent agreement between \(z=8\) sim and \(z=0\) local dwarf galaxies
22% Fe-poor UFDs
(not observed!)
1 high-mass PISN
1 Pop. II CCSN
1 low-mass PISN
On their observability at low-\(z\)
ALMA-like observations (at 0.1")
\(L=\textcolor{green}{\epsilon(n_\mathrm{X},T)} \textcolor{red}{n_\mathrm{X}n_\mathrm{e}}\bigotimes\mathrm{PSF}\)
Tabulated
From simulation
PRELIMINARY RESULTS
PRELIMINARY RESULTS
\(M_\star \approx 10^{10}\,M_\odot, \quad z=4,\quad r>R_\mathrm{vir}/4\)
Overall trend:
lower-ionization lines damped with neq
\(\mathrm{CII\, 158µm}\)
\(\mathrm{OIII\, 88µm}\)
\(\text{O\small{II}}\)
\(\text{O\small{I}}\)
\(\text{N\small{I}}\)
\(\text{Mg\small{II}}\)
\(\text{Ne\small{II}}\)
\(\text{CO}\)
\(\rho\)
\(v_r\)
\(\text{O\small{III}}\)
genetIC
Processes that control ion and molecular properties:
Processes that control gas temperature:
Katz, CC 2024
\(\Sigma\)OI
\(\Sigma\)OII
\(\Sigma\)OIII
Create “twin” simulation relaxed to photo-ionization equilibrium (PIE):
Code: Katz & CC, in prep.
Electron abundances
\(M_\star \approx 10^{10}\,M_\odot, \quad z=4\)
Data within \(r>R_\mathrm{vir}/4\)
\(M_\star \approx 10^{10}\,M_\odot, \quad z=4\)
Effect on \(\mathrm{He\,II}\)
\(M_\star \approx 10^{10}\,M_\odot, \quad z=4\)
Overall trend:
high-ionization lines boosted with neq
\(M_\star \approx 10^{10}\,M_\odot, \quad z=4,\quad r>R_\mathrm{vir}/4\)
\(M_\star \approx 10^{10}\,M_\odot, \quad z=4,\quad r>R_\mathrm{vir}/4\)
Overall trend:
intermediate-ionization lines unchanged
Tillson+15
Dekel&Birnboim 06
High-\(z\):
most of mass + AM flow along filaments
⇒ Natural interface between cosmo scales & galaxy formation
Circum Galactic Medium (\(r>R_\mathrm{vir}/3\))
HeII @ (PIE)
\(M=1.2\,10^9\,\mathrm{M_\odot}\)
HeII @ (neq)
\(M=8.8\,10^8\,\mathrm{M_\odot}\)
+\(30\%\)
[CIII]\(\lambda\lambda 1907\rm Å\) @ (PIE)
[CIII]\(\lambda\lambda 1907\rm Å\) @ (neq)
[CIII]\(\lambda\lambda 1907\rm Å\) @ (PIE)
[CIII]\(\lambda\lambda 1907\rm Å\) @ (neq)
[OIII]\(\lambda\lambda 1664\rm Å\) @ (PIE)
[OIII]\(\lambda\lambda 1664\rm Å\) @ (neq)
[OIII]\(\lambda\lambda 1664\rm Å\) @ (PIE)
[OIII]\(\lambda\lambda 1664\rm Å\) @ (neq)
Refining where
\( \Delta x > 2 \sqrt{\dfrac{P_\mathrm{th}}{\rho}}\times {t_\mathrm{cool}},\)
(Rey+23)
\(+120\,\mathrm{Myr}\)
Quasi-Lagrangian + Jeans
Quasi-Lagrangian + Jeans + CGM ref
Cooling and chemical timescales go as \(n^2\)
Emission
Zou+24
Pen+25 (\(z\approx2.8\))
⇒ Natural interface between cosmo scales & galaxy formation
Circum Galactic Medium (\(r>R_\mathrm{vir}/3\))
Modelling challenge:
Gible project, Ramesh+24
Low grav. tides
Large grav. tides
Background: Vintage Gordon (follow-up of Vintergatan) simulation
(PI: Cadiou)
\(t_\mathrm{chem} \propto 1/n^2\)
\(t_\mathrm{dyn} \propto 1/\sqrt{n}\)
\(t_\mathrm{burst} \sim 10-100\,\mathrm{Myr}\)
VG: Vintergatan (Agertz+21)
⇒ Well-regulated by \(z=0\)
High-resolution early \(<1\mathrm{pc}\)
Constant resolution \(\sim 20\,\mathrm{pc}\)
Difference \([\mathrm{C{\small{II}}}]\)-weighted vs. \(n_\mathrm{H}\)-weighted
results
Stacked profiles
36 galaxies @ \(z=10\)
\(8.3\leq\log(M_\star/\mathrm{M}_\odot)\leq 10.0\)
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
Only gas within \(\pm0.5\,\mathrm{kpc}\) height
All gas
Switching to equilibrium cooling
Katz 22
Results from Eddie
Me
Tracer particles
High-cadence sampling
Puns
Martin Rey
Pop II modeling
Cooling length refinment
ICs generation
Harley Katz
RAMSES-RTZ
Pop III modeling
Calibrations
CP not too bad compared to Vintergatan (Rey+23)
CC underregulates
Constant comoving
Constant physical
Same model, but high-\(z\) dwarf \(M_\mathrm{dm}=10^{9}\,\mathrm{M}_\odot\) at \(z=6\)
Refining where
\( \Delta x > 2 \sqrt{\dfrac{P_\mathrm{th}}{\rho}}\times \dfrac{1}{\Lambda_\mathrm{net}},\)
(Rey+23)
\(z=5.8\)
\(z=5.8(+2\,\mathrm{Myr})\)
\(20\,\mathrm{kpc}\)
How much does it cost?
\(\times 3\)
\(\times 70\)!
It works and stay tuned for results?