Corentin Cadiou
CNRS @ IAP, Paris
Co-Is: Harley Katz, Martin Rey
Collaborators: Agertz, Blaizot, Cameron, Choustikov, Devriendt, Jones, Kimm, Saxena, Martin-Alvarez, Matsumato, Pearce, Rodriguez-Montero, Rosdahl, Slyz, Stiskalek, Storck, Yee
Tillson+15
Dekel&Birnboim 06
High-\(z\):
most of mass + AM flow along filaments
⇒ Natural interface between cosmo scales & galaxy formation
Circum Galactic Medium (\(r>R_\mathrm{vir}/3\))
⇒ Natural interface between cosmo scales & galaxy formation
Circum Galactic Medium (\(r>R_\mathrm{vir}/3\))
Modelling challenge:
Gible project, Ramesh+24
Emission
Zou+24
Pen+25 (\(z\approx2.8\))
Lots of assumptions
(equilibrium, geometry, element abundances, …)
\(\rho, T, Z,v\)
sometimes \(n_\mathrm{H}, n_{\mathrm{HI}}, n_\mathrm{HeI}, n_\mathrm{HeII},n_\mathrm{HeIII},\)
Cooling and chemical timescales go as \(n^2\)
\(\text{O\small{II}}\)
\(\text{O\small{I}}\)
\(\text{N\small{I}}\)
\(\text{Mg\small{II}}\)
\(\text{Ne\small{II}}\)
\(\text{CO}\)
\(\rho\)
\(v_r\)
\(\text{O\small{III}}\)
genetIC
\(\Sigma\)HI
\(\Sigma\)HII
\(\Sigma\)MgII
\(\Sigma\)OII
\(\Sigma\)OI
\(\Sigma\)OII
\(\Sigma\)OIII
Create “twin” simulation relaxed to photo-ionization equilibrium (PIE):
Code: Katz & CC, in prep.
Electron abundances
\(M_\star \approx 10^{10}\,M_\odot, \quad z=4\)
Data within \(r>R_\mathrm{vir}/4\)
\(M_\star \approx 10^{10}\,M_\odot, \quad z=4\)
Effect on \(\mathrm{He\,II}\)
\(M_\star \approx 10^{10}\,M_\odot, \quad z=4\)
Overall trend:
high-ionization lines boosted with neq
\(M_\star \approx 10^{10}\,M_\odot, \quad z=4,\quad r>R_\mathrm{vir}/4\)
\(M_\star \approx 10^{10}\,M_\odot, \quad z=4,\quad r>R_\mathrm{vir}/4\)
Overall trend:
lower-ionization lines damped with neq
\(M_\star \approx 10^{10}\,M_\odot, \quad z=4,\quad r>R_\mathrm{vir}/4\)
Overall trend:
intermediate-ionization lines unchanged
HeII @ (PIE)
\(M=1.2\,10^9\,\mathrm{M_\odot}\)
HeII @ (neq)
\(M=8.8\,10^8\,\mathrm{M_\odot}\)
+\(30\%\)
[CIII]\(\lambda\lambda 1907\rm Å\) @ (PIE)
[CIII]\(\lambda\lambda 1907\rm Å\) @ (neq)
[CIII]\(\lambda\lambda 1907\rm Å\) @ (PIE)
[CIII]\(\lambda\lambda 1907\rm Å\) @ (neq)
[OIII]\(\lambda\lambda 1664\rm Å\) @ (PIE)
[OIII]\(\lambda\lambda 1664\rm Å\) @ (neq)
[OIII]\(\lambda\lambda 1664\rm Å\) @ (PIE)
[OIII]\(\lambda\lambda 1664\rm Å\) @ (neq)
Refining where
\( \Delta x > 2 \sqrt{\dfrac{P_\mathrm{th}}{\rho}}\times {t_\mathrm{cool}},\)
(Rey+23)
\(+120\,\mathrm{Myr}\)
Quasi-Lagrangian + Jeans
Quasi-Lagrangian + Jeans + CGM ref
\(\mathrm{CII\, 158µm}\)
\(\mathrm{OIII\, 88µm}\)
Low grav. tides
Large grav. tides
Background: Vintage Gordon (follow-up of Vintergatan) simulation
(PI: Cadiou)
\(t_\mathrm{chem} \propto 1/n^2\)
\(t_\mathrm{dyn} \propto 1/\sqrt{n}\)
\(t_\mathrm{burst} \sim 10-100\,\mathrm{Myr}\)
Processes that control ion and molecular properties:
Processes that control gas temperature:
Image: Cadiou/Katz/Rey+in prep
VG: Vintergatan (Agertz+21)
⇒ Well-regulated by \(z=0\)
High-resolution early \(<1\mathrm{pc}\)
Constant resolution \(\sim 20\,\mathrm{pc}\)
Difference \([\mathrm{C{\small{II}}}]\)-weighted vs. \(n_\mathrm{H}\)-weighted
results
Stacked profiles
36 galaxies @ \(z=10\)
\(8.3\leq\log(M_\star/\mathrm{M}_\odot)\leq 10.0\)
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
⚠️ PRELIMINARY ⚠️
Only gas within \(\pm0.5\,\mathrm{kpc}\) height
All gas
Switching to equilibrium cooling
Katz 22
Results from Eddie
Harikane+24
FOOD, Wilkins+24
Cullen+24
Cameron+24
For a better intro
see Zack's presentation
What kinematics do emission lines track?
What's the Ly-\(\alpha\) escape fraction?
How to infer SFR history when spectra dominated by emission lines?
What's the structure of cold inflows?
Outflow rates?
[…]
Harikane+24
Cullen+24
Cameron+24
Me
Tracer particles
High-cadence sampling
Puns
Martin Rey
Pop II modeling
Cooling length refinment
ICs generation
Harley Katz
RAMSES-RTZ
Pop III modeling
Calibrations
CP not too bad compared to Vintergatan (Rey+23)
CC underregulates
Constant comoving
Constant physical
Same model, but high-\(z\) dwarf \(M_\mathrm{dm}=10^{9}\,\mathrm{M}_\odot\) at \(z=6\)
Pop. II
Pop. III
Refining where
\( \Delta x > 2 \sqrt{\dfrac{P_\mathrm{th}}{\rho}}\times \dfrac{1}{\Lambda_\mathrm{net}},\)
(Rey+23)
\(z=5.8\)
\(z=5.8(+2\,\mathrm{Myr})\)
\(20\,\mathrm{kpc}\)
How much does it cost?
\(\times 3\)
\(\times 70\)!
It works and stay tuned for results?