Corentin Cadiou
RUM | 18 April 2023
Tillson+15
[AM: Dekel & Birboim 06; Stewart+11; Kim+11; Pichon+11; Codis+12; Danovich+12,15; Stewart+13; Codis+15; Prieto+15; Tillson+15; Stewart+17, Cadiou+21,…]
Dekel&Birnboim 06
High-z:
most of mass + AM flow along filaments
Lower-zs:
intrinsic alignment problem
Tempel+13
Corentin Cadiou
Tillson+15
Dekel&Birnboim 06
High-z:
most of mass + AM flow along filaments
Lower-zs:
intrinsic alignment problem
Tempel+13
How do we study these effects?
Large volumes
sample \(p(M_\star, M_\mathrm{DM},\mathbf{J}, d_\mathrm{fil}, \dots)\)
This talk
sample \(p(\mathbf{J}|M_\star, M_\mathrm{DM}, d_\mathrm{fil}, \dots)\)
Corentin Cadiou
Porciani+02
Rodriguez-Gomez+22
Predictions for \(j_\mathrm{DM}\) remain qualitative
\(j_\mathrm{DM}-j_\mathrm{\star}\)
weak correlation
(statistically strong)
Corentin Cadiou
Kraljic+18 [see also Laigle15, Song+21,…]
Kaiser bias, cluster vs. groups, ...
From theory: \(M\propto \int\mathrm{d}^3R\rho\)
Mass regulated
Intrinsic alignment, formation of disks?
From theory: \(J \propto \int\mathrm{d}^3R \nabla \phi\)
Angular momentum regulated?
Harrison+17 (KMOS, \(z=1\))
Spiral galaxies \(\leftrightarrow\) high \(J_\star\)
What's the arrow of causality?
Rodriguez-Gomez+22 (TNG)
First controlled experiment of testing tidal torque theory for individual halos
CC+21a, arXiv: 2012.02201
Corentin Cadiou
\(z=0\)
\( z = 100\)
\(z=0\)
\( z = 100\)
\[\mathbf{L}_\mathrm{lin.} \propto \int\mathrm{d}^3q(\mathbf{q}-\bar{\mathbf{q}})\times \nabla\phi\]
Position w.r.t. center
Velocity
[White 84]
Note: vanishes at 1st order in a sphere
\[ \int_\Gamma \mathrm{d}^3{q}(\mathbf{q}-\mathbf{\bar{q}}) \times\nabla\phi = \int_{\partial\Gamma}\phi(q)(\mathbf{q}-\mathbf{\bar{q}})\times\mathrm{d}\mathbf{S}\]
Note: the following is a (poor) approximation:
\[ \mathbf{L} \propto \epsilon_{ijk} T_{jl}I_{lk},\quad\text{with \textbf{T} the tidal tensor and \textbf{I} the inertia tensor}\]
\(z=0\)
\( z = 100\)
[Genetic modifications: Roth+16, see also Rey&Pontzen 18, Stopyra+20]
Corentin Cadiou
Time
Sampling \(p(\mathbf{J}|M_\mathrm{DM}, d_\mathrm{fil}, \dots)\)
Time
Time
“Poorer” predictions
“Good” predictions
✅ AM of fixed DM regions responds ~linearly (so is not chaotic!)
Improve theory?
Good model of Lagrangian patch boundaries (cf. M. Musso future talk)
or
Find more robust definition of AM?
Corentin Cadiou
First controlled experiment of angular momentum accretion on individual galaxies
CC+22, arXiv: 2206.11913
Main idea: stars are deeper in potential well so less sensitive to what happens at large scales
⇒ stellar Lagrangian patch should be more stable to perturbations
Corentin Cadiou
Same \(M_\mathrm{DM},\rho_\mathrm{5 Mpc},M_\star\)
but
different \(j_\star\)?
1/ Perturb initial conditions
here: add tides
2/ Run cosmological simulation
\[\mathbf{j}_\mathrm{lin.} \propto \int\mathrm{d}^3q(\mathbf{q}-\bar{\mathbf{q}})\times \nabla\phi\]
Position w.r.t. center
Velocity
Same \(M_\mathrm{DM},\rho_\mathrm{5 Mpc},M_\star\)
but
different \(j_\star\)?
1/ Perturb initial conditions
here: add tides
2/ Run cosmological simulation
\[\mathbf{j}_\mathrm{lin.} \propto \int\mathrm{d}^3q(\mathbf{q}-\bar{\mathbf{q}})\times \nabla\phi\]
Position w.r.t. center
Velocity
Corentin Cadiou
Full hydro simulations
(10Mh @ DiRAC):
\( j_0 \times 0.66\)
\( j_0 \times 0.8\)
\( j_0 \times 1.2\)
\( j_0 \times 1.5\)
Sampling \(p(\mathbf{J}|M_\star, M_\mathrm{DM}, d_\mathrm{fil}, \dots)\)
Full hydro simulations
(10Mh @ DiRAC):
\( j_0 \times 0.66\)
\( j_0 \times 0.8\)
\( j_0 \times 1.2\)
\( j_0 \times 1.5\)
Sampling \(p(\mathbf{J}|M_\star, M_\mathrm{DM}, d_\mathrm{fil}, \dots)\)
… by delaying/hastening time of last major merger
Corentin Cadiou
INPUT \(z=\infty\)
OUTPUT
\(z=2\)
\( j_0 \times 0.66\)
\( j_0 \times 0.8\)
\( j_0 \times 1.2\)
\( j_0 \times 1.5\)
\( j_0 \times 0.66\)
\( j_0 \times 0.8\)
\( j_0 \times 1.2\)
\( j_0 \times 1.5\)
✅ Stellar AM driven by (past) tides with the cosmic web (which can be predicted)
✅ Useful to make sense out of e.g. JWST data
Corentin Cadiou
\( j_0 \times 0.66\)
\( j_0 \times 0.8\)
\( j_0 \times 1.2\)
\( j_0 \times 1.5\)
\( j_0 \times 0.66\)
\( j_0 \times 0.8\)
\( j_0 \times 1.2\)
\( j_0 \times 1.5\)
Corentin Cadiou
✅ Changes in baryon spAM \(\propto\) changes in Halo spAM
\({\color{#808080}{\lambda_\mathrm{DM}}} \underset{f_j}{\Longrightarrow} \lambda_\mathrm{\color{#0000ff}{bar}\color{#daa520}{yon}} \underset{\text{SF+fb}}{\Longrightarrow} \color{#daa520}\lambda_\star\)
❗Per-galaxy fluctuation of \(\lambda_\star/\lambda_\mathrm{DM} \)
\(\Rightarrow\) cannot be captured with HOD modelling
Gas + stars spAM
Stars spAM
Halo spAM
Halo spAM
Corentin Cadiou
Spoiler: it's the CGM
CC+Pichon+Dubois, 21, arXiv: 2110.05384
Kocjan, CC in prep.
By no means complete review!
Corentin Cadiou
[See also Danovich+15, Prieto+17]
✅ Most of re-alignment happens in the CGM \(0.1\leq \displaystyle\frac{r}{R_\mathrm{vir}}\leq 0.3\)
The longer gas remains in CGM, the more it realigns with disk
[See also Danovich+15, Prieto+17]
Ongoing work by Z. Kocjan
[Kocjan, CC+ in prep]
Filamentary accretion ~ Cold flow = \(T \leq 10^5\mathrm{K}\) for \(0.3R_\mathrm{vir} < r < 2R_\mathrm{vir}\)
Filamentary accretion ~ Cold flow = \(T \leq 10^5\mathrm{K}\) for \(0.3R_\mathrm{vir} < r < 2R_\mathrm{vir}\)
Not necessarily fast-track to star formation ⇒ lose connection to CW?
[Kocjan, CC+ in prep]
\(M_\mathrm{DM}(z=2)\approx 10^{11}-10^{12} \mathrm{M_\odot}\)
Ongoing work by Z. Kocjan
Corentin Cadiou
Corentin Cadiou
Study same object, different environment.
CC+21, arXiv: 2107.03407
Cosmic web drives AM acquisition... what scales? what's affected?
Corentin Cadiou
Corentin Cadiou
What if the galaxy had formed here instead?
Corentin Cadiou
What if the galaxy had formed here instead?
or here?
Corentin Cadiou
\(t\)
Splicing: equivalent of constraining field at all points in spliced region
Corentin Cadiou
\(M^{(1)}_{200\mathrm{c}}, c^{(1)}_\mathrm{NFW}, \dots\)
\(M^{(2)}_{200\mathrm{c}}, c^{(2)}_\mathrm{NFW}, \dots\)
\(M^{(\dots)}_{200\mathrm{c}}, c^{(\dots)}_\mathrm{NFW}, \dots\)
\(M^{(10)}_{200\mathrm{c}}, c^{(10)}_\mathrm{NFW}, \dots\)
Same halo in 10× different environments
Repeat experiment for 7 halos (70 realisations in total)
Corentin Cadiou
Same halo in 10× different environments
Repeat experiment for 7 halos (70 realisations in total)
\(M^{(1)}_{200\mathrm{c}}, c^{(1)}_\mathrm{NFW}, \dots\)
\(M^{(2)}_{200\mathrm{c}}, c^{(2)}_\mathrm{NFW}, \dots\)
\(M^{(\dots)}_{200\mathrm{c}}, c^{(\dots)}_\mathrm{NFW}, \dots\)
\(M^{(10)}_{200\mathrm{c}}, c^{(10)}_\mathrm{NFW}, \dots\)
Corentin Cadiou
Same halo in 10× different environments
Repeat experiment for 7 halos (70 realisations in total)
\(M^{(1)}_{200\mathrm{c}}, c^{(1)}_\mathrm{NFW}, \dots\)
\(M^{(2)}_{200\mathrm{c}}, c^{(2)}_\mathrm{NFW}, \dots\)
\(M^{(\dots)}_{200\mathrm{c}}, c^{(\dots)}_\mathrm{NFW}, \dots\)
\(M^{(10)}_{200\mathrm{c}}, c^{(10)}_\mathrm{NFW}, \dots\)
50% of population
Corentin Cadiou
Corentin Cadiou
The Co-evolution of the CW and Galaxies across Cosmic Time
$$\rho_\mathrm{DM}(r) = \frac{\rho_0}{\frac{r}{R_\mathrm{vir}/c} \left(1 + \frac{r}{R_\mathrm{vir}/c}\right)^2}$$
Wechsler+02
Origin of scatter at fixed \(M_\mathrm{vir}\)?
\[\mathbf{L}_\mathrm{lin.} \propto \int\mathrm{d}^3q(\mathbf{q}-\bar{\mathbf{q}})\times \nabla\phi\]
[On patch boundaries: see Lucie-Smith+18]
Most likely* field \(f\) with
Mathematically \(f\) is solution of:
\( f= a\) in \(\Gamma\)
minimizes \(\mathcal{Q} = (b-f)^\dagger\mathbf{C}^{-1}(b-f) \) outside \(\Gamma\)
Wechsler & Tinker 18
\({\color{red}M_\star} / M_\mathrm{h} \ll \Omega_b / \Omega_m \)
⇒ baryons & DM stem from different regions
Baryons more strongly bound
⇒ less prone to being ejected
Verify that
\[\xi_\mathrm{lin}(r) \sim \left\langle {\color{green}\underbrace{\delta(x=d)}_\mathrm{in}} {\color{purple} \underbrace{\delta(x=d+r)}_\mathrm{out}}\right\rangle \]
is the same in spliced / ref simulation.
Verify that
\[\xi_\mathrm{lin}(r) \sim \left\langle {\color{green}\underbrace{\delta(x=d)}_\mathrm{in}} {\color{purple} \underbrace{\delta(x=d+r)}_\mathrm{out}}\right\rangle \]
is the same in spliced / ref simulation.
Verify that
\[\xi_\mathrm{lin}(r) \sim \left\langle {\color{green}\underbrace{\delta(x=d)}_\mathrm{in}} {\color{purple} \underbrace{\delta(x=d+r)}_\mathrm{out}}\right\rangle \]
is the same in spliced / ref simulation.
angular momentum is predictable
boundary of halos in the ICs is a hard problem
⇒ limits practicality of predictions (for now)
baryons appear to be simpler!
⇒ good news for weak lensing predictions
⇒ key to understand morphology
Environmental effects:
\( l_0 \times 1.2\)
\( l_0 \times 1.5\)
\( l_0 \times 0.66\)
\( l_0 \times 0.8\)
\( l_0 \times 1.2\)
\( l_0 \times 1.5\)
\( l_0 \times 0.66\)
\( l_0 \times 0.8\)
[L. Cortese; SDSS.]
[Dubois+16]
AGN no AGN
Origin of morphological diversity at fixed mass?
[L. Cortese; SDSS.]
[Dubois+16]
AGN no AGN
Origin of morphological diversity at fixed mass?
How to explain environmental effects?
[Kraljic+ in prep]
[Danovich+15]
[Danovich+15]
I. Torque with cosmic web
[Danovich+15]
I. Torque with cosmic web
II. Transport at constant AM
[Danovich+15]
I. Torque with cosmic web
II. Transport at constant AM
III. Torque down in inner halo
[Danovich+15]
I. Torque with cosmic web
II. Transport at constant AM
III. Torque down in inner halo
IV. Mixing in inner disk & bulge
[Danovich+15]
IV. Mixing in inner disk & bulge
Fraction that ends up in disk vs. IGM?
Influence of galactic physics?
III. Torque down in inner halo
Origin of torque down (pressure or gravity)?
Loss of link with cosmic AM?
II. Transport at constant AM
Same evolution in cold/hot accretion modes?
I. Torque with cosmic web
Predict pre-accretion AM?
Alignment with environment?
[Danovich+15]
IV. Mixing in inner disk & bulge
Fraction that ends up in disk vs. IGM?
Influence of galactic physics?
III. Torque down in inner halo
Origin of torque down (pressure or gravity)?
Loss of link with cosmic AM?
See Cadiou+21c
II. Transport at constant AM
Same evolution in cold/hot accretion modes?
I. Torque with cosmic web
Predict pre-accretion AM?
Alignment with environment?
[Danovich+15]
IV. Mixing in inner disk & bulge
Fraction that ends up in disk vs. IGM?
Influence of galactic physics?
III. Torque down in inner halo
Origin of torque down (pressure or gravity)?
Loss of link with cosmic AM?
II. Transport at constant AM
Same evolution in cold/hot accretion modes?
I. Torque with cosmic web
Predict pre-accretion AM?
Alignment with environment?