Chen-Mou Cheng
chenmou.cheng@gmail.com
\[ ab=\sum_{i,j}a_ib_j=\sum_i\left(a_ib_i+\sum_{j\neq i}\alpha_{ij}+\sum_{j\neq i}\beta_{ij}\right)=\sum_i\delta_i \]
(Recall: \(k=\sum k_i\) and \(kx=\sum\sigma_i\) )
4. \(H'\left(\left(\prod_{i\in S}\Gamma_i\right)^{\delta^{-1}}\right)=H'\left(\left(g^{\sum_{i\in S}\gamma_i}\right)^{\delta^{-1}}\right)=H'\left(g^{k^{-1}}\right)=r\)
5. Broadcast \(\bar R_i=(g^{k^{-1}})^{k_i}\) and check if \(g=\prod_{i\in S}\bar R_i\)
6. Broadcast \(S_i=(g^{k^{-1}})^{\sigma_i}\) and check if \( y=\prod_{i\in S}S_i \)
7. Set \(s_i=mk_i+r\sigma_i\) and compute \[ \sum_{i\in S}s_i=m\sum_{i\in S}k_i+r\sum_{i\in S}\sigma_i=mk+rkx=s \]
(Abort if the signature does not verify)