pollev.com/chrismakler
Which Econ-related song is playing
right now?
Christopher Makler
Stanford University Department of Economics
Econ 50: Lecture 5
🐟
🥥
Production Possibilities Fronier
Feasible
Labor
Fish
🐟
Capital
Coconuts
🥥
[GOODS]
⏳
⛏
[RESOURCES]
🐟
🥥
🙂
😀
😁
😢
🙁
How does Chuck rank
all possible combinations
of fish and coconuts?
Goal: find the best combination within his production possibilities set.
Feasible
Today: Modeling Preferences with Utility Functions
Friday: Some "canonical" utility functions
Preferences: Definition and Axioms
Indifference curves
The Marginal Rate of Substitution
Quantifying Happiness
The Mathematics of Utility Functions
Perfect Substitutes
Perfect Complements
Cobb-Douglas
Quasilinear
Given a choice between option A and option B, an agent might have different preferences:
The agent strictly prefers A to B.
The agent strictly disprefers A to B.
The agent weakly prefers A to B.
The agent weakly disprefers A to B.
The agent is indifferent between A and B.
The agent strictly prefers A to B.
The agent weakly prefers A to B.
Complete
Transitive
Any two options can be compared.
If \(A\) is preferred to \(B\), and \(B\) is preferred to \(C\),
then \(A\) is preferred to \(C\).
Together, these assumptions mean that we can rank
all possible choices in a coherent way.
Special case: choosing between bundles
containing different quantities of goods.
Example: “good 1” is apples, “good 2” is bananas, and “good 3” is cantaloupes:
🍏🍏🍏🍏
🍌🍌🍌
🍈🍈🍈🍈🍈🍈
🍏🍏🍏
🍌🍌🍌🍌🍌🍌🍌🍌
🍈🍈
General framework: choosing between anything
Good 1 \((x_1)\)
Good 2 \((x_2)\)
Completeness axiom:
any two bundles can be compared.
Implication: given any bundle \(A\),
the choice space may be divided
into three regions:
preferred to A
dispreferred to A
indifferent to A
Indifference curves cannot cross!
A
The indifference curve through A connects all the bundles indifferent to A.
Indifference curve
through A
🍏🍏
🍏🍏
🍏🍏
🍏🍏
🍏🍏
🍌🍌🍌🍌
🍌🍌🍌🍌
🍌🍌🍌🍌
🍌🍌🍌🍌
🍌🍌🍌🍌
🍌🍌🍌🍌
🍏🍏
🍏🍏
🍏🍏
🍏🍏
🍏🍏
🍏🍏
🍌🍌🍌🍌
🍌🍌🍌🍌
🍌🍌🍌🍌
🍌🍌🍌🍌
🍌🍌🍌🍌
Suppose you were indifferent between the following two bundles:
Starting at bundle X,
you would be willing
to give up 4 bananas
to get 2 apples
Let apples be good 1, and bananas be good 2.
Starting at bundle Y,
you would be willing
to give up 2 apples
to get 4 bananas
Visually: the MRS is the magnitude of the slope
of an indifference curve
How do I love thee? Let me count the ways.
I love thee to the depth and breadth and height
My soul can reach, when feeling out of sight
For the ends of Being and ideal Grace.
I love thee to the level of everyday’s
Most quiet need, by sun and candlelight.
I love thee freely, as men strive for Right;
I love thee purely, as they turn from Praise.
I love thee with the passion put to use
In my old griefs, and with my childhood’s faith.
I love thee with a love I seemed to lose
With my lost saints,—I love thee with the breath,
Smiles, tears, of all my life!—and, if God choose,
I shall but love thee better after death.
Elizabeth Barrett Browning
Sonnets from the Portugese 43
the greatest happiness of the greatest number
is the foundation of morals and legislation.
Jeremy Bentham
the utilitarian standard...
is not the agent's own greatest happiness,
but the greatest amount of happiness, altogether.
John Stuart Mill
Introduction to the Principles of Morals and Legislation (1789)
Utilitarianism (1861)
How do we model preferences mathematically?
Approach: assume consuming goods "produces" utility
Labor
Fish
🐟
Capital
⏳
⛏
[RESOURCES]
Utility
😀
[GOODS]
Fish
🐟
Coconuts
🥥
Given a choice between option A and option B, an agent might have different preferences:
The agent strictly prefers A to B.
The agent strictly disprefers A to B.
The agent weakly prefers A to B.
The agent weakly disprefers A to B.
The agent is indifferent between A and B.
"A is strictly preferred to B"
Words
Preferences
Utility
"A is weakly preferred to B"
"A is indifferent to B"
"A is weakly dispreferred to B"
"A is strictly dispreferred to B"
Suppose the "utility function"
assigns a real number (in "utils")
to every possible consumption bundle
We get completeness because any two numbers can be compared,
and we get transitivity because that's a property of the operator ">"
An indifference curve is a set of all bundles between which a consumer is indifferent.
If a consumer is indifferent between two bundles (A ~ B), then \(u(a_1,a_2) = u(b_1,b_2)\)
Therefore, an indifference curve is a set of all consumption bundles which are assigned the same number of "utils" by the function \(u(x_1,x_2)\)
Likewise, set of bundles preferred to some bundle A is the a set of all consumption bundles which are assigned a greater number of "utils" by \(u(x_1,x_2)\)
Do we have to take the
number of "utils" seriously?
Just like the "volume" on an amp, "utils" are an arbitrary scale...saying you're "11" happy from a bundle doesn't mean anything!
Given a utility function \(u(x_1,x_2)\),
we can interpret the partial derivatives
as the "marginal utility" from
another unit of either good:
Along an indifference curve, all bundles will produce the same amount of utility
In other words, each indifference curve
is a level set of the utility function.
The slope of an indifference curve is the MRS. By the implicit function theorem,
(Note: we'll treat this as a positive number, just like the MRTS and the MRT)
If you give up \(\Delta x_2\) units of good 2, how much utility do you lose?
If you get \(\Delta x_1\) units of good 1, how much utility do you gain?
If you end up with the same utility as you begin with:
pollev.com/chrismakler
What is the MRS of the utility function \(u(x_1,x_2) = x_1x_2\)?
MRS = 4
MRS = 1
Applying a positive monotonic transformation to a utility function doesn't affect
the way it ranks bundles.
Example: \(\hat u(x_1,x_2) = 2u(x_1,x_2)\)
Applying a positive monotonic transformation to a utility function doesn't affect
its MRS at any bundle (and therefore generates the same indifference map).
Example: \(\hat u(x_1,x_2) = 2u(x_1,x_2)\)
Applying a positive monotonic transformation to a utility function doesn't affect
its MRS at any bundle (and therefore generates the same indifference map).
Example: \(\hat u(x_1,x_2) = \ln(u(x_1,x_2))\)
pollev.com/chrismakler
The utility function \(u(x_1,x_2) = x_1x_2^2\) represents the same preferences as which of the following utility functions? You may select more than one answer.
We've asserted that all (rational) preferences are complete and transitive.
There are some additional properties which are true of some preferences:
Some goods provide positive marginal utility only up to a point, beyond which consuming more of them actually decreases your utility.
Strict monotonicity: any increase in any good strictly increases utility (\(MU > 0\) for all goods)
Weak monotonicity: no increase in any good will strictly decrease utility (\(MU \ge 0\) for all goods)
Example: Pfizer's COVID-19 vaccine has a dose of 0.3mL, Moderna's has a dose of 0.5mL
Take any two bundles, \(A\) and \(B\), between which you are indifferent.
Would you rather have a convex combination of those two bundles,
than have either of those bundles themselves?
If you would always answer yes, your preferences are convex.
Take any two bundles, \(A\) and \(B\), between which you are indifferent.
Would you rather have a convex combination of those two bundles,
than have either of those bundles themselves?
If you would always answer no, your preferences are convex.
1. Convexity does not imply you always want equal numbers of things.
2. It's preferences which are convex, not the utility function.
Continuous: utility functions don't have "jumps"
Smooth: marginal utilities don't have "jumps"
Counter-example: vaccine dose example
Counter-example: Leontief/Perfect Complements utility function
If preferences are strictly monotonic, strictly convex, continuous, and smooth, then:
Indifference curves are smooth, downward-sloping, and bowed in toward the origin
The MRS is diminishing as you move down and to the right along an indifference curve
Good 1 \((x_1)\)
Good 2 \((x_2)\)
"Law of Diminishing MRS"