Christopher Makler
Stanford University Department of Economics
Econ 51: Lecture 4
Part I: Pure strategies with discrete actions
Part II: Pure strategies with continuous actions
Part III: Mixed strategies
In plain English: given my beliefs about what the other player(s) are doing, a strategy is my "best response"
if there is no other strategy available to me
that would give me a higher payoff.
In plain English: given the strategies chosen by the other player(s),
a strategy is my "best response"
if there is no other strategy available to me
that would give me a higher payoff.
1
2
Stag
Hare
Stag
Hare
5
5
,
4
0
,
4
4
,
0
4
,
In plain English: in a Nash Equilibrium, every player is playing a best response to the strategies played by the other players.
In other words: there is no profitable unilateral deviation
given the other players' equilibrium strategies.
1
2
1
2
,
4
3
,
1
4
,
1
1
,
Top
Middle
Left
Center
Bottom
Right
3
0
,
2
1
,
3
2
,
8
0
,
8
0
,
Nash equilibrium occurs when every player is choosing strategy which is a
best response to the strategies chosen by the other player(s)
1
2
Opera
Movie
Opera
Movie
2
1
,
0
0
,
1
2
,
0
0
,
pollev.com/chrismakler
1
2
A
B
A
B
2
2
,
0
0
,
1
1
,
0
0
,
pollev.com/chrismakler
When the benefits of a good accrue to everyone,
everyone has an incentive to shirk their contribution
Two people, 1 and 2, can contribute to a public good. Each has income \(m = 12\).
Write payoffs in terms of strategies:
Write payoffs in terms of strategies:
1
2
0
1
0
1
0
0
,
11
12
,
22
22
,
12
11
,
We could start to write out a payoff matrix...
Write payoffs in terms of strategies:
We could start to write out a payoff matrix...
but the strategy space is continuous so we could never list out every possible (real number) contribution.
Instead, let's think about a best response function
What is player 1's best response to player 2 choosing to contribute some amount \(g_2\)?
Write payoffs in terms of strategies:
Solve for each player's best response function
What is player 1's best response to player 2 choosing to contribute some amount \(g_2\)?
To maximize give the other's strategy, take the derivative of your payoff function
with respect to your own strategy and set it equal to zero:
BEST RESPONSE FUNCTIONS
BEST RESPONSE FUNCTIONS
In a Nash equilibrium, each player is choosing a strategy which is a best response to the other's strategy.
To solve, plug one's BR into the other:
BEST RESPONSE FUNCTIONS
In a Nash equilibrium, each player is choosing a strategy which is a best response to the other's strategy.
To solve, plug one's BR into the other:
Could they both do better?
What would a social planner do?
1
2
Heads
Tails
Heads
Tails
1
1
,
-1
-1
,
1
1
,
-1
-1
,
Each player chooses Heads or Tails.
If they choose the same thing,
they both "win" (get a payoff of 1).
If they choose differently,
they both "lose" (get a payoff of -1).
Circle best responses.
What are the Nash equilibria of this game?
1
2
Heads
Tails
Heads
Tails
1
-1
,
-1
1
,
1
-1
,
-1
1
,
Each player chooses Heads or Tails.
If they choose the same thing,
player 1 "wins" (gets a payoff of 1)
and player 2 "loses" (gets a payoff of -1).
If they choose differently,
they player 1 "loses" (gets a payoff of -1)
and player 1 "wins" (gets a payoff of 1).
Circle best responses.
What are the Nash equilibria of this game?
If two or more pure strategies are best responses given what the other player is doing, then any mixed strategy which puts probability on those strategies (and no others) is also a best response.
2
\({1 \over 6}\)
\({1 \over 3}\)
\({1 \over 2}\)
\(0\)
Player 2's strategy
\({1 \over 6} \times 6 + {1 \over 3} \times 3 + {1 \over 2} \times 2 + 0 \times 7\)
\(=3\)
\({1 \over 6} \times 12 + {1 \over 3} \times 6 + {1 \over 2} \times 0 + 0 \times 5\)
\(=4\)
\({1 \over 6} \times 6 + {1 \over 3} \times 0 + {1 \over 2} \times 6 + 0 \times 11\)
\(=4\)
Player 1's expected payoffs from each of their strategies
\(X\)
\(A\)
1
\(B\)
\(C\)
\(D\)
\(Y\)
\(Z\)
6
6
,
3
6
,
2
8
,
7
0
,
12
6
,
6
3
,
0
2
,
5
0
,
6
0
,
0
9
,
6
8
,
11
4
,
If player 2 is choosing this strategy, player 1's best response is to play either Y or Z.
Therefore, player 1 could also choose to play any mixed strategy \((0, p, 1-p)\).
1
2
Heads
Tails
Heads
Tails
1
-1
,
-1
1
,
1
-1
,
-1
1
,
Let's return to our zero-sum game.
\((p)\)
\((1-p)\)
What is player 1's expected payoff from Heads?
Suppose player 2 is playing a mixed strategy: Heads with probability \(p\),
and tails with probability \(1-p\).
What is player 1's expected payoff from Tails?
For what value of \(p\) would player 1 be willing to mix?
1
2
Heads
Tails
Heads
Tails
1
-1
,
-1
1
,
1
-1
,
-1
1
,
\((p)\)
\((1-p)\)
For what value of \(p\) would player 1 be willing to mix?
Now suppose player 1 does mix, and plays Heads with probability \(q\) and Tails with probability \(1 - q\).
\((q)\)
\((1-q)\)
For what value of \(q\) would player 2 be willing to mix?
A mixed strategy profile is a Nash equilibrium if,
given all players' strategies, each player is mixing among strategies which are their best responses
(i.e. between which they are indifferent)
Important: nobody is trying to make the other player(s) indifferent; it's just that in equilibrium they are indifferent.