Dimitrije Marković
Theoretical Neurobiology Meeting
01.03.2020
https://en.wikipedia.org/wiki/Markov_renewal_process#Relation_to_other_stochastic_processes
If \( Y_t \equiv X_n \) for \( t \in \left[T_n, T_{n+1} \right)\) then the process \(Y_t\) is called a semi-Markov process
State space \( S\)
\( \ldots\)
\( \ldots\)
Time
For exponentially distributed iid waiting times we have a continuous time Markov chain
A discrete time Markov chain has geometrically distributed waiting times
Shun-Cheng Yu, "Hidden semi-Markov Models: Theory, Algorithms and Applications", Elsevir 2016.
A graphical representation of HSMM
Latent variables
outcomes
\( f \in \{1, 2, 3\}\)
time step
\( s \in \{A, B\}\)
\( f \in \{1, 2, 3\}\)
time step
\( s \in \{A, B\}\)
Phase transitions
\[p(f_t|f_{t-1})\]
M Varmazyar, et al., Journal of Industrial Engineering International (2019).
\(\ldots\)
Phase transitions
\[p(f_t|f_{t-1})\]
M Varmazyar, et al., Journal of Industrial Engineering International (2019).
Duration distribution
Negative binomial
\[p(\tau) = {\tau + n - 2 \choose \tau-1}(1-\delta)^{\tau-1}\delta^n\]
\(\ldots\)
Phase transitions
\[p(f_t|f_{t-1})\]
State transitions
\( p(s_t|s_{t-1}, f_{t-1})\)
A
B
A
B
\(\ldots\)
History of past outcomes \( O_t = (o_1, \ldots, o_t) \)
Marginal likelihood
Predictive prior
When simulating behaviour \( \gamma \rightarrow \infty \)
For data analysis \( \gamma \) is a free parameter
\( f \in \{1, \ldots, n_{max} \} \)
\( \otimes \)
\( \otimes \)
loss
gain
cue A
cue B
\(P(o_t^1) = [\frac{1}{3}, \frac{1}{3}, \frac{1}{3}] \)
\(P(o_t^2) = [\rho_1, \rho_2, \frac{\rho}{2}, \frac{\rho}{2}] \)
Is the experimental setup useful?
Process:
Thanks to:
https://slides.com/dimarkov/active-inference-semi-markov
https://github.com/dimarkov/pybefit
https://journals.plos.org/ploscompbiol/article?rev=2&id=10.1371/journal.pcbi.1006707