Planetary-scale science and decision infrastructure
Applied Active Inference Symposium
August 22, 2023
Rafael Kaufmann, Dimitrije Marković
Everything is connected (climate, food, security, biodiv)
× Self-evolving tech (inc. runaway AI)
× Coordination failure ("Moloch")
= Total risk for humanity and biosphere
Schmachtenberger: hypothesized attractors
Goal: Resilience/stabilization of bio-socioeconomic system, subject to
Complicators:
A decentralized hybrid AI-human system for planetary-scale decision support and automation
Human and artificial agents interacting in an open network
Facilitate consilience (model alignment) and coherence (goal alignment) at multiple levels/scales, up to global (survival of the system)
Built-in incentives and governance
Privacy-preserving
Shared, verifiable, networked local models of real-world systems
Understand costs and benefits of strategies/projects
Better decisions: recommendations, negotiations, valuations...
Initial application: agroecology
Distributed non-iid data
Sparse
Heterogeneous
Private
Potentially unreliable
Localized, collaborative forecasting and planning
Personalized
Privacy preserving
Recommendations, not direct control
A practical implementation tackling real-world challenges:
Fangorn: engine used by each Ent to inquire, learn, plan, and allocate resources
Gaia Protocol: language used by Ents to independently interact with their environments and each other
Gaia Network: mesh of AI agents called Natural Entities (Ents) that act as proxies for real-world systems
If we do this right, the Gaia Network approximates a single composite agent (more on this later)
Match on:
Hyperprior
\( p\left( \pmb{\phi}\right) \)
Prior
\( \prod_{n=1}^Np\left( \pmb{\theta}_n | \pmb{\phi}\right)\)
Agent 2
Agent N
Agent 1
\( \pmb{C}^1_t = \left(\pmb{c}^1_1, \ldots, \pmb{c}^1_t \right) \)
\( p\left( \pi^1 \right) \)
\( p_{\pmb{\theta}_1}\left( \pmb{s}^1_t|\pmb{c}^1_{t}, \pmb{s}^1_{t-1}, \pi \right) \)
\( p_{\pmb{\theta}_1}\left( \pmb{o}^1_t| \pmb{s}^1_t \right) \)
Ambrogioni, Luca, et al. "Automatic structured variational inference." International Conference on Artificial Intelligence and Statistics. PMLR, 2021.
\(x_1\)
\(x_2\)
\(x_3\)
\(x_4\)
\(x_5\)
\(x_6\)
\(x_7\)
\(p(\pmb{x})=\prod_{j=1}^kp_j\left( x_j|\pmb{\theta}_j(\pi_j) \right) \)
parent variables
\( \pi_j \subseteq \{ x_i\}_{i\neq j} \)
\(x_1\)
\(x_2\)
\(x_3\)
\(x_4\)
\(x_5\)
\(x_6\)
\(x_7\)
\(q(\pmb{x}|\Lambda, \pmb{\Alpha})=\prod_{j=1}^k q_j\left( x_j|\Omega^{\pmb{\alpha}_j}_{\pmb{\lambda_j}} \left[ \pmb{\theta}_j\right] \right) \)
\( \Omega^{\pmb{\alpha}}_{\pmb{\lambda}} \left[ \pmb{\theta}\right] = \pmb{\lambda} \odot \pmb{\theta} + \left( 1 - \pmb{\lambda} \right) \odot \pmb{\alpha}\)
local data
\( \pmb{D}_n\)
local prior
\( p \left( \pmb{\theta_n|\pmb{\phi}}\right) \)
global posterior \( q\left(\pmb{\phi} \right) \)
local posterior
\( q\left(\pmb{\theta}_n \right) \)
local data
\( \pmb{D}_n\)
local prior
\( p \left( \pmb{\theta_n|\pmb{\phi}}\right) \)
global posterior \( q^{(i)}\left(\pmb{\phi} \right) \)
local posterior
\( q^{(i)}\left(\pmb{\theta}_n|\pmb{\phi} \right) \)
local data
\( \pmb{D}_n\)
local prior
\( p \left( \pmb{\theta_n|\pmb{\phi}}\right) \)
global posterior \( q\left(\pmb{\phi} \right) \)
local posterior
\( q\left(\pmb{\theta}_n \right) \)
local data
\( \pmb{D}_{n^\prime}\)
local prior
\( p \left( \pmb{\theta_{n^\prime}|\pmb{\phi}}\right) \)
global posterior \( q^{(i+1)}\left(\pmb{\phi} \right) \)
local posterior
\( q^{(i+1)}\left(\pmb{\theta}_{n^\prime}|\pmb{\phi} \right) \)
Node \( n \)
Node \(n^\prime \)
Gong, Jinu, Osvaldo Simeone, and Joonhyuk Kang. "Bayesian variational federated learning and unlearning in decentralized networks." 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2021.
Academic studies
Expert
knowledge
Entmoot
Meta-analysis Model
Entmoot DB
Federated Parameter Store
Fangorn
Project-level
Agent Models
Project context and data
Project assessment and decision support
Project-level results
Global constrains on regression
Regression results
Global constrains on agents
Williams, Donald R., Stephen R. Martin, and Philippe Rast. "Putting the individual into reliability: Bayesian testing of homogeneous within-person variance in hierarchical models." Behavior research methods 54.3 (2022): 1272-1290.
\( p(y_{mj}|x) = \mathcal{N} \left(x, \sigma_{mj}^2 \right) \)
Source reliability
\( \rho_{mj} = \frac{\sigma_x^2}{\sigma_x^2 + \sigma^2_{mj}} \)
Simplified generative model
\( p(x) = \mathcal{N} \left( \mu, \sigma_x^2 \right) \)
Modality reliability
\( \rho_{m} = \frac{\sigma_x^2}{\sigma_x^2 + \frac{1}{M^2}\sum_j \sigma^2_{mj}} \)
\(m \in \{1, \ldots, M \} \) and \(j \in \{1, \ldots, K \} \)
\( \pmb{\varphi} \sim p\left( \pmb{\varphi} \right) \)
Global parameters
\(\vdots \)
Latent states - Plant growth model
\(\vdots\)
Observables
\( \vdots \)
Local parameters
\(\vdots \)
\( \pmb{y}_t^n \sim p \left(\pmb{y}_t^n | \pmb{x}_t^n , \pmb{\theta}_n \right) \)
\( \pmb{\theta}_n \sim p\left( \pmb{\theta} | \pmb{\varphi} \right) \)
\( \pmb{x}_t^n = \pmb{f} \left( \pmb{x}_{t-1}^n, \pmb{c}_{t-1}^n, \pi_{t-1}^n, \pmb{\theta}_n \right) \)
Covariates
\(\vdots\)
\( \pmb{C}^n = \left( \pmb{c}_1^n, \ldots, \pmb{c}_T^n \right) \)
Policies
\(\vdots\)
\( \pmb{\pi}^n = \left( \pmb{u}_1^n, \ldots, \pmb{u}_T^n \right) \)
\( \pmb{\varphi} \sim p\left( \pmb{\varphi} \right) \)
Global parameters
\(\vdots \)
Observables
\( \vdots \)
Local parameters
\(\vdots \)
\( y_k^d \sim \prod_i \rho_i \left( \pmb{c}_k, \pmb{\theta}^\prime_k \right)^{\delta_{y_k^d, i}} \)
\( \pmb{\theta}^\prime_k \sim p\left( \pmb{\theta}^\prime | \pmb{\varphi} \right) \)
\( \pmb{c}_k \)
for \( k \in \left\{1, \ldots, K \right \} \)
Covariates
\(\vdots\)
\( \pmb{y}_k^c \sim \mathcal{N}\left( \pmb{y}| h\left( \pmb{c}_k, \pmb{\theta}^\prime_k \right), \pmb{\sigma}_k^2 \right) \)
Academic studies
Expert
knowledge
Fangorn
Project-level
Agent Models
Entmoot
Meta-analysis Model
Global constrains on regression
Regression results
Project context and data
Academic studies
Expert
knowledge
Fangorn
Project-level
Agent Models
Entmoot
Meta-analysis Model
Project context and data
Posterior estimates of global hyper-parameters
intercept
slope
Academic studies
Expert
knowledge
Fangorn
Project-level
Agent Models
Entmoot
Meta-analysis Model
Project context and data
Posterior estimates of source reliability
Estimate possible action sequences from available data
...for policy purposes we do not need exact empirical measures of the optimal scale. If one jumps from an airplane it may be nice to have an altimeter, but what one really needs is a parachute.
- Edward Fullbrook
Kaufmann, Rafael, Pranav Gupta, and Jacob Taylor. "An active inference model of collective intelligence." Entropy 2021, 23(7), 830; https://doi.org/10.3390/e23070830
Kaufmann, Rafael, Casper Hesp, 2022, unpublished
https://evolution.ml/demos/npidashboard/
Consortium launch
Protocol and reference architecture RFC
Protocol candidate; ecosystem funding program launch
FOSS reference implementation
Gaia OS
Sign up at gaiaconsortium.org and/or reach out to rafael.k@digitalgaia.earth!
Together, we can design, build, and learn what it takes to achieve planetary regeneration.