NOTES from google drive
VW!XY || !VWZ || VWYZ || VW!XYZ
5031
VW!XY || !VWZ || VWYZ || VW!XYZ
Count the variables: V, W, X, Y, and Z - five total.
Therefore we need 25=32 rows.
you want to build a number displaying machine
We have set up a shell with some HTML, CSS, and JS. Here's what happened behind the scenes:
Create 10 buttons in the <div> each of which sends a single digit to a function called "display(x)"
Create a <div> ("division") element to contain our button pad
Add <br /> ("line break") tags to create "line breaks" so we see three buttons per line
Create a table in HTML with 5 rows and 3 columns that we can use for the seven segment display.
Give the seven table cells that will be part of the 7 segment display the ids A through G.
Give the table cells A, G, and D the class "horizontal" and cells B, C, E, F the class "vertical" so that we can use CSS to style them
Create the classes vertical and horizontal in CSS
.vertical { width: 20; height: 60; background-color: red; }
.horizontal
{ width: 60; height: 20; background-color: red; }
off on on off off off off
on off on on off on on
on on on on on on on
ANALOG - CONTINUOUS
DIGITAL - DISCRETE
ANALOG - CONTINUOUS
DIGITAL - DISCRETE
analog
digital
input
output
4 input bits
4 input bits
5 output bits
push button switches
Statement: sentence that can be true or false
Logical expression: combination of logical variables and operators
value = TRUE
value = FALSE
D = A and B
E = A and C
F = A or B
G = not C
H = B and not C
I = not A or not C
Consider the three expressions below as articulated by your instructor:
A = "My name is Dan."
B = "At the moment, I am in Toronto."
C= "I am a dog."
Which of the following logical expressions is true?
A and B also written AB, A∧B, A·B, A && B
A or B also written A+B, A∨B, A || B
not A also written ~A, !A, ¬A, Ā
Only two "numbers": 0 and 1
Three "operations":
2. Match expressions on left with notation on the right
A∨B
A·B
A∧B
AB
A+B
A OR B
A and B
A && B
A||B
A∨B
Ā
A·B
A∧B
AB
A+B
A OR B
~A
!A
¬A
A and B
A && B
A||B
means "A and B ... or C"
not "A and ... B or C"
means "A and ... B or C"
3. Is the middle expression the same as the one on the left or the one on the right?
(ABC) + D | ABC+D | AB + CD |
((ABC)+(ABD))E | AB+CD E | (AB)+(CDE) |
(A+!A)(B) | A!B+AB | A(!B+B) |
AC+BD | AB(C+D) | ABC+ABD |
4. Simplify this expression using the AB+A!B=A rule.
!AB + A!C + AC + !A!B
!AB + (A!C + AC) + !A!B
!AB + A(!C + C) + !A!B
!AB + A + !A!B
A + AB + !A!B
A + !A(B + !B)
A + !A
TRUE
5. Simplify this expression using the AB+A!B=A rule.
!ABCD + !AB!CD
!ABDC + !ABD!C
!ABD(C + !C)
!ABD(TRUE)
!ABD
6. Simplify this expression using the AB+A!B=A rule.
!ABCD + ABCD + !ABC!D + ABC!D
BCD + BC!D
BC
BCD + !ABC!D + ABC!D
(AB)C = (AB)C
(A+B)+C = (A+B)+C
AB = BA
A+B = B+A
A logical expression is DEFINED by its truth table which shows its value for every possible combination of inputs
A truth table is simply a listing of all possible combinations for an expression along with the value of the expression for each combination.
Suppose an expression includes three variables A, B, and C.
A can be true or false
B can be true or false
C can be true or false
B can be true or false
C can be true or false
C can be true or false
C can be true or false
1
0
11
10
01
00
111
110
101
100
011
010
001
000
A
C
B
exp
A truth table is simply a listing of all possible combinations for an expression along with the value of the expression for each combination.
Suppose an expression includes three variables A, B, and C.
0 0 1
0 0 0
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
A
C
B
exp
"expression" - we'll put the value of the expression for each input combination here
A | B | A+B |
---|---|---|
1 | 1 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
row for each
input combination
row for each
input combination
column
for each
variable
column
for "output"
A | B | A+B |
---|---|---|
1 | 1 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
A | B | C |
---|---|---|
1 | 1 | 1 |
1 | 1 | 0 |
1 | 0 | 1 |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 1 | 0 |
0 | 0 | 1 |
0 | 0 | 0 |
A | B | C | D |
---|---|---|---|
1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 0 | 1 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 |
all the 1's for the first varible
all the 0's for the first varible
all the 1's for the first varible
all the 0's for the first varible
all the 0's for the first varible
all the 1's for the first varible
A |
---|
1 |
0 |
A | B |
---|---|
1 | 1 |
1 | 0 |
0 | 1 |
0 | 0 |
A | B | C |
---|---|---|
1 | 1 | 1 |
1 | 1 | 0 |
1 | 0 | 1 |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 1 | 0 |
0 | 0 | 1 |
0 | 0 | 0 |
A | B | C | D |
---|---|---|---|
1 | 1 | 1 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 0 | 0 |
1 | 0 | 1 | 1 |
1 | 0 | 1 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 |
A | B | AB |
---|---|---|
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |
AND
A | B | A+B |
---|---|---|
1 | 1 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
OR
A | !A |
---|---|
1 | 0 |
0 | 1 |
NOT
7. Example: Build Truth Table for !A + B
8. Build Truth Table for !A!B + BC
A | B | C |
---|---|---|
1 | 1 | 1 |
1 | 1 | 0 |
1 | 0 | 1 |
1 | 0 | 0 |
0 | 1 | 1 |
0 | 1 | 0 |
0 | 0 | 1 |
0 | 0 | 0 |
!A!B
1 |
1 |
1 |
1 |
BC
+
!A |
---|
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
!B |
---|
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
8. Example: Build Truth Table for !A!B + BC
A | B | C | A | and | B+C | AB | + | AC |
---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | |
1 | 0 | 0 | 1 | 0 | ||||
0 | 1 | 1 | 1 | |||||
0 | 1 | 0 | 1 | |||||
0 | 0 | 1 | 1 | |||||
0 | 0 | 0 | 0 |
A | B | AB | !(AB) | !A | + | !B | |
---|---|---|---|---|---|---|---|
1 | 1 | ||||||
1 | 0 | ||||||
0 | 1 | ||||||
0 | 0 |
A | B | A+B | !(A+B) | !A | AND | !B | |
---|---|---|---|---|---|---|---|
1 | 1 | ||||||
1 | 0 | ||||||
0 | 1 | ||||||
0 | 0 |
DeMorgan
!(AB) = !A+!B
!(A+B) = !A!B
Distributive
A(B+C) = AB + AC
Double negation
!!A = A
identity elements
distributive property
mutual exclusive + exhaustive
definition of NOT
DeMorgan's Laws
1
1
1
1
1
1
0
0
0
1
1
1
0
0
0
0
A | B | C | EXP |
---|---|---|---|
1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 0 | 1 | 0 |
1 | 0 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | 0 | 1 |
1
1
1
1
1
1
0
0
0
1
1
1
0
0
0
0
A | B | C | EXP |
---|---|---|---|
1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 0 | 1 | 0 |
1 | 0 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | 0 | 1 |
1
1
1
1
+
+
+
B
A
C
1
1
1
A
!C
!B
1
0
0
C
!A
!B
1
0
0
!C
!A
!B
0
0
0
A | B | C | EXP |
---|---|---|---|
1 | 1 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 0 | 1 | 0 |
1 | 0 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 |
0 | 0 | 0 | 1 |
1
1
1
1
1
1
1
1
0
0
1
0
0
0
0
0
+
+
+
+
+
+
B
A
C
A
!C
!B
C
!A
!B
!C
!A
!B
Push
button
Generate
4 bit signal
Send
7 bit signal
Illuminate segments
Logical Expressions and switching circuits are the same thing
1 kg
1 kg
1 m
9.8 joules
1 kg
1 kg
positive and negative electric charges are attracted to one another
potential (volts)
separating positive and negative charges increases potential
potential (volts)
+
-
3V
+
-
3V
+
-
3V
Circuit is closed. Light bulb "feels" a voltage difference
Circuit is open. Light bulb "feels" no voltage difference
+
3V
Circuit is closed. Light bulb "feels" a voltage difference
Circuit is open. Light bulb "feels" no voltage difference
Ground
aka
0V
By Cloullin - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=101294652
+3 or +5 volts
0 volts
1
0
true
false
+
-
3V
+
-
3V
+
-
3V
+3-5 volts
+3-5 volts
logical 0
logical 1
OPEN SWITCH
CLOSED SWITCH
For what it's worth: the usual value of digital "1" is +3-5 volts DC
3V
A | B | A and B |
---|---|---|
1 | 1 | 1 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 0 |
A | B | A or B |
---|---|---|
1 | 1 | 1 |
1 | 0 | 1 |
0 | 1 | 1 |
0 | 0 | 0 |
A B C AB+BC
1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0
1 1 1
0 1 1
1 1 0
+
+
A B C AB+BC
1 1 1 1
1 1 0 1
1 0 1 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 0
1 1 1
0 1 1
1 1 0
+
+
ABC
!ABC
AB!C
+
+
AB
BC
+
"or of ands" from truth table
simplified expression via distributive property and A+!A=true
33% savings!
W | X | Y | Z |
---|---|---|---|
A | B | C | D | E | F | G |
---|---|---|---|---|---|---|
W |
---|
O |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
X |
X |
X |
X |
X |
X |
W | X | Y | Z |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 |
A | B | C | D | E | F | G |
---|---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 1 | |
1 | 1 | |||||
1 | 1 | 1 | 1 | 1 | ||
1 | 1 | 1 | 1 | 1 | ||
1 | 1 | 1 | 1 | |||
1 | 1 | 1 | 1 | 1 | ||
1 | 1 | 1 | 1 | 1 | 1 | |
1 | 1 | 1 | ||||
1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 1 | 1 | 1 | 1 | 1 | |
NUM |
---|
O |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
X |
X |
X |
X |
X |
X |
A
B
G
D
E
C
F
W | X | Y | Z |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 |
A |
---|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
NUM |
---|
O |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
X |
X |
X |
X |
X |
X |
A
B
G
D
E
C
F
00 | 01 | 11 | 10 | |
00 | ||||
01 | ||||
11 | ||||
10 |
WX
YZ
A!B!CD
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
W | X | Y | Z |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 |
A |
---|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
NUM |
---|
O |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
X |
X |
X |
X |
X |
X |
A
B
G
D
E
C
F
00 | 01 | 11 | 10 | |
00 | ||||
01 | ||||
11 | ||||
10 |
WX
YZ
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
W | X | Y | Z |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 |
A |
---|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
NUM |
---|
O |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
X |
X |
X |
X |
X |
X |
00 | 01 | 11 | 10 | |
00 | ||||
01 | ||||
11 | ||||
10 |
WX
YZ
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
+
+
+
+
+
+
+
A=
W | X | Y | Z |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 |
A |
---|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
NUM |
---|
O |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
X |
X |
X |
X |
X |
X |
00 | 01 | 11 | 10 | |
00 | ||||
01 | ||||
11 | ||||
10 |
WX
YZ
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
+
+
+
+
+
+
+
A=
W | X | Y | Z |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 |
A |
---|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
NUM |
---|
O |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
X |
X |
X |
X |
X |
X |
00 | 01 | 11 | 10 | |
00 | ||||
01 | ||||
11 | ||||
10 |
WX
YZ
1
1
1
1
1
1
1
1
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
+
+
+
+
+
+
+
A=
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
W | X | Y | Z |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 |
A |
---|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
NUM |
---|
O |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
X |
X |
X |
X |
X |
X |
00 | 01 | 11 | 10 | |
00 | ||||
01 | ||||
11 | ||||
10 |
WX
YZ
1
1
1
1
1
1
1
1
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
+
+
+
+
+
+
+
A=
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
W | X | Y | Z |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 |
A |
---|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
NUM |
---|
O |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
X |
X |
X |
X |
X |
X |
00 | 01 | 11 | 10 | |
00 | ||||
01 | ||||
11 | ||||
10 |
WX
YZ
1
1
1
1
1
1
1
1
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
+
+
+
+
+
+
+
A=
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
W | X | Y | Z |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 |
A |
---|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
NUM |
---|
O |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
X |
X |
X |
X |
X |
X |
00 | 01 | 11 | 10 | |
00 | ||||
01 | ||||
11 | ||||
10 |
WX
YZ
1
1
1
1
1
1
1
1
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
+
+
+
+
+
+
+
A=
W | X | Y | Z |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 |
A |
---|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
-- |
-- |
-- |
-- |
-- |
-- |
NUM |
---|
O |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
X |
X |
X |
X |
X |
X |
00 | 01 | 11 | 10 | |
00 | ||||
01 | ||||
11 | ||||
10 |
WX
YZ
1
1
1
1
1
1
1
1
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
+
+
+
+
+
+
+
A=
W | X | Y | Z |
---|---|---|---|
0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 |
0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 |
0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 |
1 | 0 | 0 | 1 |
1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 |
1 | 1 | 0 | 0 |
1 | 1 | 0 | 1 |
1 | 1 | 1 | 0 |
1 | 1 | 1 | 1 |
A |
---|
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
-- |
-- |
-- |
-- |
-- |
-- |
NUM |
---|
O |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
X |
X |
X |
X |
X |
X |
00 | 01 | 11 | 10 | |
00 | ||||
01 | ||||
11 | -- | -- | -- | -- |
10 | -- | -- |
WX
YZ
1
1
1
1
1
1
1
1
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
+
+
+
+
+
+
+
A=
00 | 01 | 11 | 10 | |
00 | ||||
01 | ||||
11 | -- | -- | -- | -- |
10 | -- | -- |
WX
YZ
1
1
1
1
1
1
1
1
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
+
+
+
+
+
+
+
A=
!WXY!Z
!WXYZ
!W!XY!Z
!W!XYZ
!W!XY
!W!XY
!WXY
!WXY
!WY
!WY
00 | 01 | 11 | 10 | |
00 | ||||
01 | ||||
11 | -- | -- | -- | -- |
10 | -- | -- |
WX
YZ
1
1
1
1
1
1
1
1
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
+
+
+
+
+
+
+
A=
!WXY!Z
!WXYZ
!W!XY!Z
!W!XYZ
!W!XY
!W!XY
!WXY
!WXY
!WY
!WY
00 | 01 | 11 | 10 | |
00 | ||||
01 | ||||
11 | -- | -- | -- | -- |
10 | -- | -- |
WX
YZ
1
1
1
1
1
1
1
1
!W!X!Y!Z
W!X!YZ
W!X!Y!Z
!WXY!Z
!WXYZ
!WX!YZ
!W!XY!Z
!W!XYZ
+
+
+
+
+
+
+
A=
!W!XY
!W!XY
!WXY
!WXY
!WY
!WY
=!W!XY
=!WXY
!W!XY!Z
!W!XYZ
+
!WXY!Z
!WXYZ
+
A dependable method for simplifying any logical expression
AB + A!B = A(B+!B) = A and TRUE = A
A may be a compound expression:
PQR + PQ!R = (PQ)(R+!R) = PQ
P=ABCD + ABC!D + AB!C + A!B
ABC(D+!D)
ABC
AB(C+!C)
AB
A(B+!B)
A
change A
ABCD
A!BCD
ABC!D
AB!CD
!ABCD
change C
change B
change D
A B C D Y 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
AB
CD
ABCD
ABC!D
AB!CD
AB!C!D
A!BCD
!ABCD
!A!BCD
ABC
AB!C
ACD
!ACD
CD | |||||
---|---|---|---|---|---|
00 | 01 | 11 | 10 | ||
AB |
00 |
!A!B!C!D |
!A!B!CD |
!A!BCD |
!A!BC!D |
01 |
!AB!C!D |
!AB!CD |
!ABCD |
!ABC!D |
|
11 |
AB!C!D |
AB!CD |
ABCD |
ABC!D |
|
10 |
A!B!C!D |
A!B!CD |
A!BCD |
A!BC!D |
Karnaugh Map
CD | |||||
---|---|---|---|---|---|
00 | 01 | 11 | 10 | ||
AB | 00 | !A!B!C!D 0 |
!A!B!CD1 | !A!BCD 3 |
!A!BC!D 2 |
01 | !AB!C!D 4 |
!AB!CD 5 |
!ABCD 7 |
!ABC!D 6 |
|
11 | AB!C!D 12 |
AB!CD 13 |
ABCD 15 |
ABC!D 14 |
|
10 | A!B!C!D 8 |
A!B!CD 9 |
A!BCD 11 |
A!BC!D 10 |
Karnaugh Map
CD | |||||
---|---|---|---|---|---|
00 | 01 | 11 | 10 | ||
AB | 00 |
|
|
|
|
01 |
|
|
|
|
|
11 | AB!C!D 1 |
AB!CD 1 |
ABCD 1 |
ABC!D 1 |
|
10 | A!B!C!D 1 |
A!B!CD 1 |
A!BCD 1 |
A!BC!D 1 |
P=ABCD + ABC!D + AB!CD + A!BCD + AB!C!D +A!B!CD + A!B!C!D + A!BC!D
CD | |||||
---|---|---|---|---|---|
00 | 01 | 11 | 10 | ||
AB | 00 |
|
|
|
|
01 |
|
|
|
|
|
11 | AB!C!D 1 |
AB!CD 1 |
ABCD 1 |
ABC!D 1 |
|
10 | A!B!C!D 1 |
A!B!CD 1 |
A!BCD 1 |
A!BC!D 1 |
P=ABCD + ABC!D + AB!CD + A!BCD + AB!C!D +A!B!CD + A!B!C!D + A!BC!D
CD | |||||
---|---|---|---|---|---|
00 | 01 | 11 | 10 | ||
AB | 00 |
|
|
|
|
01 |
|
|
|
|
|
11 | AB!C!D 1 |
AB!CD 1 |
ABCD 1 |
ABC!D 1 |
|
10 | A!B!C!D 1 |
A!B!CD 1 |
A!BCD 1 |
A!BC!D 1 |
P=ABCD + ABC!D + AB!CD + A!BCD + AB!C!D +A!B!CD + A!B!C!D + A!BC!D
CD | |||||
---|---|---|---|---|---|
00 | 01 | 11 | 10 | ||
AB | 00 |
|
|
|
|
01 |
|
|
|
|
|
11 |
1 | 1 | 1 | 1 | |
10 |
1 | 1 | 1 | 1 |
P=ABCD + ABC!D + AB!C + A!B
P=ABCD + ABC!D + AB!CD + AB!C!D + A!BCD + A!BC!D + A!B!CD + A!B!C!D
NOTE: X1=B, X3=A, X0=C, X2=D
C is 1 here
D is 1 here
A is 1 here
B is 1 here
A
C
B
D
1 0 1 1 1 0 1
R=!ABC!D+A!B!C!D+A!B!CD+A!BC!D+A!BCD+AB!C!D+AB!CD+ABC~D
00 | 01 | 11 | 10 | |
00 | ||||
01 | 1 | |||
11 | 1 | 1 | 1 | |
10 | 1 | 1 | 1 | 1 |
AB
CD
A!C
A!B
R=A!B + A!C + BC!D
BC!D
1 0 1 1 1 0 0
0 0 1 1 0 0 0
0 0 1 1 1 0 1
1 1 1 1 1 1
Race Conditions - the race is among these AND gates. Their inputs depend on A, B, C, and D but some might be delayed by NOT
0 1 0 0
!A
0 1 0 0
!B
0 0 0 0
!C
1 1 1 0
!D
1 1 1 1
A
1 0 1 1
B
1 1 1 1
C
0 0 0 0
D
R=A!B + A!C + BC!D
R=A!B + A!C + BC!D + A!D