François Lanusse
National Center for Scientific Research (CNRS)
Polymathic AI
Project led by Liam Parker, Francois Lanusse, Leopoldo Sarra, Siavash Golkar, Miles Cranmer
Accepted contribution at the NeurIPS 2023 AI4Science Workshop
Published in the Monthly Notices of Royal Astronomical Society
Cosine similarity search
Supervised baseline
Accepted at NeurIPS 2025, spotlight presentation at NeurIPS 2025 AI4Science Workshop
Project led by:
Francois
Lanusse
Liam
Parker
Jeff
Shen
Tom
Hehir
Ollie
Liu
Lucas
Meyer
Sebastian Wagner-Carena
Helen
Qu
Micah
Bowles
(Blanco Telescope and Dark Energy Camera.
Credit: Reidar Hahn/Fermi National Accelerator Laboratory)
(Subaru Telescope and Hyper Suprime Cam. Credit: NAOJ)
(Dark Energy Spectroscopic Instrument)
(Sloan Digital Sky Survey. Credit: SDSS)
(Gaia Satellite. Credit: ESA/ATG)
Cuts: extended, full color griz, z < 21
Cuts: extended, full color grizy, z < 21
Cuts: parallax / parallax_error > 10
Field Embedding Strategy Developed for
Multiple Physics Pretraining (McCabe et al. 2023)
DES g
DES r
DES i
DES z
HSC g
HSC r
HSC i
HSC z
HSC y
Trained on ->
Eval on ->
Inputs:
measured fluxes
Inputs:
measured fluxes + image
Spotlight at 2025 NeurIPS AI4Science Workshop
Nolan Koblischke
Credit: Melchior et al. 2021
Credit:DESI collaboration/DESI Legacy Imaging Surveys/LBNL/DOE & KPNO/CTIO/NOIRLab/NSF/AURA/unWISE
Collaborative project with about 30 contributors
Presented at NeurIPS 2024 Datasets & Benchmark track
Multiband images from Legacy Survey
hsc
├── hsc.py
├── pdr3_dud_22.5
│ ├── healpix=1104
│ │ └── 001-of-001.hdf5
│ ├── healpix=1105
│ │ └── 001-of-001.hdf5
│ ├── healpix=1106
│ │ └── 001-of-001.hdf5
│ ├── healpix=1107
│ │ └── 001-of-001.hdf5
│ ├── healpix=1171
│ │ └── 001-of-001.hdf5
│ ├── healpix=1172
│ │ └── 001-of-001.hdf5
│ ├── healpix=1174
│ │ └── 001-of-001.hdf5
│ ├── healpix=1175
│ │ └── 001-of-001.hdf5
│ ├── healpix=1702
│ │ └── 001-of-001.hdf5
...from datasets import load_dataset
# Open Hugging Face dataset
dset_ls = load_dataset("MultimodalUniverse/legacysurvey",
streaming=True,
split='train')
dset_ls = dset_ls.with_format("numpy")
dset_iterator = iter(dset_ls)
# Draw one example from the dataset iterator
example = next(dset_iterator)
# Let's inspect what is contained in an example
print(example.keys())
figure(figsize=(12,5))
for i,b in enumerate(example['image']['band']):
subplot(1,4,i+1)
title(f'{b}')
imshow(example['image']['flux'][i], cmap='gray_r')
axis('off')
dict_keys(['image', 'blobmodel', 'rgb', 'object_mask', 'catalog', 'EBV', 'FLUX_G', 'FLUX_R', 'FLUX_I', 'FLUX_Z', 'FLUX_W1', 'FLUX_W2', 'FLUX_W3', 'FLUX_W4', 'SHAPE_R', 'SHAPE_E1', 'SHAPE_E2', 'object_id'])
Follow us online