During a Repetition (defined by the TR), we can collect the signal once, at a certain known TE, to obtain a timeseries (Single-Echo, SE)...
...or multiple times, at different TEs, to obtain n timeseries (Multi-Echo, ME)
|----- - - -|----- - - -|----- - - -|
Assuming monoexponential decay, $ T_2^{\star} $ decay is:
\( \Large S(x,t,TE_n) = \) \( \Large S_0(x,t) \) \( \Large e^{-TE_n R_2^{\star}(x,t)}\) \( \Large + n \)
Take home message n. 1
\[ S_{TE_n} = S_0 e^{-TE_n R_2^{\star}} + n \]
\[ \ln(S_{TE_n}) = \ln(S_0 e^{-TE_n R_2^{\star}}) \]
\[ \ln(S_{TE_n}) = \ln(S_0) -R_2^{\star} TE_n \]
\[ \begin{cases} \ln(S_{TE_1}) = \ln(S_0) -R_2^{\star} TE_1 \\ \ln(S_{TE_2}) = \ln(S_0) -R_2^{\star} TE_2 \\\ln(S_{TE_3}) = \ln(S_0) -R_2^{\star} TE_3 \end{cases} \]
GLM: \( Y = a_0 - a_1 TE \)
$\overline{S_{0_{(fit)}}}$ vs $\overline{T_{2_{(fit)}}^{\star}}$
Improved coregistration with anatomical!
\[\small S_{OC}(t)=\sum{S_{TE_n}(t) w(T^{\star}_2)}_n \]
\[ w(T^{\star}_2)_n = \frac{TE_n \cdot e^{-TE_n/T^{\star}_{2(fit)}}}{\sum {TE_n \cdot e^{-TE_n/T^{\star}_{2(fit)}}}} \]
In this way, spatial CNR is maximised and the signal can be recovered in areas of drop-out (Posse, 1999)
One subject from OpenfMRI ds000258
TR: 2.47s, TEs: 12,28,44,60 ms, Res: 3.75x3.75x4.4 mm
Preprocessing:
Seed-based CAPs, 9 mm ROI around MNI coord: 3, -52, 21 mm (PCC)
Take home message n. 2
\(\small S_{TE_n} = S_0 e^{-TE_n R_2^{\star}} + n\)\(\small \qquad\qquad \overline{S_{TE_n}} = \overline{S_0} e^{-TE_n \overline{R_2^{\star}}} \)
\[\scriptsize S_0 = \overline{S_0}+\Delta S_0 \qquad\qquad \overline{S_0}>>\Delta S_0 \] \[\scriptsize R_2^{\star} = \overline{R_2^{\star}}+\Delta R_2^{\star} \qquad\qquad \overline{R_2^{\star}}>>\Delta R_2^{\star} \]
\[\small S_{TE_n} = (\overline{S_0} + \Delta S_0)e^{-TE_n(\overline{R_2^{\star}}+ \Delta R_2^{\star})} \]
\[\small S_{TE_n} = \overline{S_0} e^{-TE_n\overline{R_2^{\star}}}e^{-TE_n \Delta R_2^{\star}} + \Delta S_0 e^{-TE_n\overline{R_2^{\star}}}e^{-TE_n \Delta R_2^{\star}} \]
\[\small S_{TE_n} = (\overline{S_{TE_n}} / \overline{S_{TE_n}}) ( \overline{S_0} e^{-TE_n\overline{R_2^{\star}}} + \Delta S_0 e^{-TE_n\overline{R_2^{\star}}}) e^{-TE_n \Delta R_2^{\star}} \]
\[\small S_{TE_n} = \overline{S_{TE_n}}( 1 + \Delta S_0 / \overline{S_0}) e^{-TE_n \Delta R_2^{\star}} \]
\[\small S_{TE_n} = \overline{S_{TE_n}}( 1 + \Delta S_0 / \overline{S_0}) (1 -TE_n \Delta R_2^{\star}) \]
\[\small S_{TE_n} = \overline{S_{TE_n}} \big( 1 + \frac{\Delta S_0}{\overline{S_0}}\big)(1 -TE_n \Delta R_2^{\star}) \]
\[\small S_{TE_n} = \overline{S_{TE_n}} \big( 1 -TE_n \Delta R_2^{\star} + \frac{\Delta S_0}{\overline{S_0}} - \frac{\Delta S_0 TE_n \Delta R_2^{\star}}{\overline{S_0}} \big) \]
\[\small \frac{S_{TE_n}-\overline{S_{TE_n}}}{\overline{S_{TE_n}}} = -TE_n \Delta R_2^{\star} + \frac{\Delta S_0}{\overline{S_0}} \]
\[\small \Delta\rho=\Delta S_0 / \overline{S_0} \]
\[\small \Delta\kappa=\Delta R_2^{\star}\overline{TE} \]
\[\small S_{SPC} \approx \Delta\rho - \frac{TE_n}{\overline{TE}}\Delta\kappa\]
\[\small S_{SPC} \approx \Delta\rho - \frac{TE_n}{\overline{TE}}\Delta\kappa\]
\[\small S_{SPC} \approx\Delta\rho \]
\[\small S_{SPC} \approx \frac{TE_n}{\overline{TE}}\Delta\kappa=TE_n\Delta R_2^{\star} \]
$\Delta\kappa$ is dependent from the TE, while $\Delta\rho$ is independent (Kundu et al., 2012)
Independent Component Analysis can be use to decompose a matrix in ortogonal spatial components (with relative timecourse) FSL MELODIC webpage
A widely accepted denoising approach is ICA denoise (Griffanti et al., 2014, 2017, Pruim et al., 2015a, 2015b, Salimi-Khorshidi et al., 2014)
It is possible to use the content of $\Delta\kappa$ (and $\Delta\rho$) to estimate the number of and classify ICA components
(Kundu et al., 2012, 2013)
\[\small S_{SPC} \approx \frac{TE_n}{\overline{TE}}\Delta\kappa \qquad\qquad S_{SPC} \approx\Delta\rho \]
\[\small \alpha_v = \sum \Delta S^2_{TE_n} \]
\[\small \kappa = \frac{\sum{\alpha_v F_v,\Delta \kappa}}{\sum \alpha_v} \qquad \qquad \rho = \frac{\sum{\alpha_v F_v,\Delta \rho}}{\sum \alpha_v} \]
$F_v$ is the result of a voxelwise F-test between the residual of the fit of a model to the residual of the null model ($\alpha_v$)
The components are sorted by their $\kappa$ value (and by $\rho$), $\kappa$ and $\rho$ thresholds selected by the "elbow" method
(Kundu et al., 2012, 2013)Kundu et al., 2013: use these for ME-ICR
Current approach: use these for denoise
Take home message n. 3
Biexponential models reveal non-linear IV/ TE dependence(Havlicek et al., 2017)
GODEC can further clean the timeseries(Power et al., 2018)
Bayesian estimation of signals(Cai et al., 2019)
The community (at least, OHBM's) is starting to pay attention to ME-fMRI!