The Chambolle—Pock method

1. Background

We want to solve problems of the form

\[\min_{x\in\R^n}\max_{y\in\R^m}L(x,y),\]

where \(L\) is a convex-concave function.

 

\(L\) will always assume the form

\[L(x,y)=\phi(x,y)+f(x)-g(y),\]

for \(f\) convex, \(g\) concave and \(\phi\) smooth convex-concave.

Where do min-max problems come from?

1. Optimization under constraints

\[\min_{x :\, h(x)=0}f(x)=\min_x\max_{y} f(x)+y^\top\!h(x)\]

More generally, sum of two convex functions,

\[\min_{x}f_1(x)+f_2(Ax)=\min_x\max_{y} f_1(x)+y^\top\!Ax-f_2^*(y)\]

Where do min-max problems come from?

2. Game theory: two-player zero-sum games.

 

    Player 1 can choose strategy \(x\in\R^n\). 

    Player 2 can choose strategy \(y\in\R^m\).

 

    Payoff of player 2 : \(L(x,y)\).

​    Payoff of player 1 : \(-L(x,y)\).

 

 

A Nash equilibrium is a pair \((x^*,y^*)\) such that

 

\[-L(x^*,y^*) \ge -L(x,y^*)\quad\text{for all } x,\]

and

\[L(x^*,y^*) \ge L(x^*,y)\quad\text{for all } y \]

i.e. a saddle-point of \(L\):

\[L(x^*,y)\le L(x^*,y^*)\le L(x,y^*).\]

Where do min-max problems come from?

Prop If

\[L(x^*,y)-L(x,y^*)\le 0\]

for all \(x,y\), then \((x^*,y^*)\) is a saddle-point

Proof

(i) Choose \(x=x^*\), then

\[L(x^*,y)\le L(x^*,y^*).\]

 

(ii) Choose \(y=y^*\), then

\[L(x^*,y^*)\le L(x,y^*).\]

Proof \(\min\max\) is always \(\ge\max\min\). So just need to show

\[\min_x\max_yL(x,y)\le\max_y\min_xL(x,y)\]

We have

\[\min_x\max_yL(x,y)\le\max_yL(x^*,y)\]

and the saddle-point identity guarantees that

\[\max_yL(x^*,y)\le L(x^*,y^*).\]

Similarly, \(\max_y\min_xL(x,y)\ge \min_xL(x,y^*),\) and the saddle-point identity gives us 

\[\min_xL(x,y^*)\ge L(x^*,y^*).\]

Prop If \(x^*,y^*\) is a saddle-point of \(L\) then 

\[\min_x\max_y L(x,y)=\max_y\min_x L(x,y)\]

 

En bref

The important object is the gap function

\[G_{\bar x,\bar y}(x,y):=L(\bar x,y)-L(x,\bar y).\]

 

1. \((x^*,y^*)\) is a saddle-point of \(L\) iff

\[G_{x^*,y^*}(x,y) \le 0\]

for all \((x,y)\) .

 

2. Therefore \(G_{x_n,y_n}(x,y)\) will be used to quantity how good an approximate saddle \((x_n,y_n)\) point is.

2. The Chambolle—Pock scheme

Here \(\sigma>0\) and \(\tau>0\) are step-sizes. 

\[\tilde y_{n+1}=2y_n-y_{n-1},\]
\[x_{n+1}=\argmin_xL(x,\tilde y_{n+1})+\frac{1}{2\sigma}\|x-x_n\|^2,\]
\[y_{n+1}=\argmax_yL(x_{n+1},y)-\frac{1}{2\tau}\|y-y_n\|^2.\]

Reference: Chambolle, Antonin, and Thomas Pock. "On the ergodic convergence rates of a first-order primal–dual algorithm." Mathematical Programming 159.1-2 (2016): 253-287.

In practice, \(L(x,y)=f(x)+x^\top\!Ay-g(y)\).

 

The \(x\)-update is

\[x_{n+1}=\argmin_xf(x)+x^\top\!A\tilde{y}_{n+1}+\frac{1}{2\sigma}\|x-x_n\|^2,\]

 

i.e. a proximal step on \(f(x)+x^\top\!A\tilde{y}_{n+1}\).

 

 

If \(f\) is smooth, also possible to do an explicit step

\[x_{n+1}=x_n-\sigma\nabla f(x_n)-\sigma A\tilde{y}_{n+1}\]

Role of the extrapolation \(\tilde{y}\)

"Gradient descent"

\begin{cases} x_{n+1} &= x_n - \sigma\nabla_xL(x_n,y_n)\\ y_{n+1} &= y_n + \tau\nabla_yL(x_n,y_n) \end{cases}

Chambolle–Pock

\begin{cases} x_{n+1} &= x_n - \sigma\nabla_xL(x_n,\tilde{y}_{n+1})\\ y_{n+1} &= y_n + \tau\nabla_yL(x_{n+1},y_n) \end{cases}

Most simple example: \(L(x,y)=xy\) in 1d

Thm Let \(L(x,y)=f(x)-g(y)+x^\top\!Ay\). If the stepsizes are such that

\[\sigma\tau\|A\|^2\le 1,\]

 

then

 

\[L(X_n,y)-L(x,Y_n)\le\frac 1 n \Big(\frac{\|x-x_0\|^2}{2\sigma}+\frac{\|y-y_0\|^2}{2\tau}\Big)\]

 

Here \(X_n=\frac 1 n\sum_{k=1}^nx_k\) and \(Y_n=\frac 1 n\sum_{k=1}^ny_k\).

 

Application : \(L^1\) optimal transport

EMD problem:

\[\min_{m} \int_{\Omega}|m(x)|\,dx\]

over vector fields \(m\colon\Omega\to\R^d\) such that

\[-\mathrm{div}(m)=f\quad\text{in } \Omega\]

and \(m\cdot n=0\) on \(\partial\Omega\).

Optimal transport : \(f=\nu-\mu\).

Reference: Jacobs, M., Léger, F., Li, W., & Osher, S. (2019). Solving large-scale optimization problems with a convergence rate independent of grid size. SIAM Journal on Numerical Analysis, 57(3), 1100-1123.

Application : \(L^1\) optimal transport

EMD problem:

\[\min_{-\mathrm{div}(m)=f} \int_{\Omega}|m|\]

 

Min-max formulation:

\[\min_{-\mathrm{div}(m)=f}\max_{p}\int_{\Omega}m(x)\cdot p(x)\,dx-\|p\|_{\infty}\]

 

Set

\[L(m,p)=F(m)+\langle m,p\rangle-\|p\|_\infty,\]

 

Application: matrix games

Two players zero-sum game.

 

Player 1 can choose strategy \(i=1\dots n\),

player 2 can choose strategy \(j=1\dots m\).

 

Denote \(a_{ij}\) be the payoff of player 2.

The Nash equilibrium will be given by

\[\min_{p\in\Delta_n}\max_{q\in\Delta_m} p^\top\!Aq.\]

 

Here \(\Delta_n=\{p\in\R^n : p_i\ge 0,\sum_ip_i=1\}\)