Joint works with Matt Jacobs and Wonjun Lee
Two mass densities over \(\Omega\subset\mathbb{R}^d\), with same total mass,
\[\int_\Omega \mu(x)dx=\int_\Omega\nu(y)dy\]
\(\mu\)
\(\nu\)
How to optimally transport \(\mu\) to \(\nu\)?
Map \(T\colon\Omega\to\Omega\), measure \(\mu\)
Pushforward: \((T_{\#}\mu)(A)=\mu(T^{-1}(A))\)
D E F I N I T I O N
\(\mu\)
\(T_{\#}\mu\)
\(T(x)\)
$$\inf_{T}\int_\Omega |T(x)-x|^2 \,\mu(dx)=:W_2^2(\mu,\nu)$$
subject to: \(T_{\#}\mu=\nu\)
Cost to move mass \(\mu(dx)\) from \(x\) to \(T(x)\) is
\[|T(x)-x|^2 \,\mu(dx)\]
\(T(x)\)
$$\inf_{T}\int_\Omega |T(x)-x|^2 \,\mu(dx)=:W_2^2(\mu,\nu)$$
subject to: \(T_{\#}\mu=\nu\)
Features:
1) A distance between \(\mu\) and \(\nu\)
2) An optimal map \(T\)
3) Formally a Riemannian metric on the manifold of measures with geodesics \[\rho_t = ((1-t)x+tT(x))_{\#}\mu\]
Numerically: not easy to solve
\(2048\times 2048\) points
Caffarelli's counterexample
\(2048\times 2048\) points
A distance \(W_2\) over measures, with “Riemannian” structure
“\(\dot\rho_t = -\mathrm{grad}_{W_2}U(\rho_t)\)”
Functional \(U(\rho)\), want to make sense of
\[\rho(t+\tau)=\argmin_\rho U(\rho)+\frac{1}{2\tau}W_2^2(\rho(t),\rho)\]
Look at ”implicit Euler”
(JKO)
The right approach, theoretically and numerically
\[\partial_t\rho+\mathrm{div}(\rho\, v)=0,\]
\[v =-\nabla\phi,\]
\[\phi=\delta U(\rho)\]
on domain \(\Omega\subset\mathbb{R}^d\), no flux out and with initial condition \(\rho(t=0)=\rho_0\).
When \(\tau\to 0\),
Slow diffusion
\[U(\rho)=\int_\Omega \frac{1}{m-1}\rho(x)^m+V(x)\rho(x)\,dx,\]
\(m > 1\). \(V(x)\) can be \(+\infty\).
Incompressible energy
\[U(\rho)=\int_\Omega u_\infty(\rho(x))+V(x)\rho(x)\,dx,\]
Aggregation-diffusion
\[U(\rho)=\int_\Omega \rho(x)^m\,dx + \iint_\Omega |x-y|^2\rho(x)\rho(y)\,dxdy\]
porous medium equation
\(\partial_t\rho=\Delta\rho^m\).
\(m\to 1: U(\rho) = \int_\Omega \rho\log\rho + V\rho\)
Primal, numerically difficult:
\[\sup_{\phi,\psi}\,\langle\psi,\mu\rangle - U^*(\phi)\]
over \((\phi,\psi)\) s.t.
\[\psi(x)-\phi(y)\le\frac{|x-y|^2}{2\tau}.\]
\[\inf_\rho U(\rho)+\frac{1}{2\tau}W_2^2(\mu,\rho).\]
Dual:
with \(\phi^c(x)=\inf_y\phi(y)+\frac{|x-y|^2}{2\tau}\),
\(\psi^c(y)=\sup_x\psi(x)-\frac{|x-y|^2}{2\tau}\).
☇
\[\sup_\phi\langle\phi^c,\mu\rangle-U^*(\phi)=:J(\phi)\]
\[\sup_\psi\langle\psi,\mu\rangle-U^*(\psi^c)=:I(\psi)\]
→ unconstrained concave maximization problems
→ Recover \(\rho^*\) from \(\phi^*\) by
\[\rho^*=\delta U^*(\phi^*)\]
\[\sup_\phi\langle\phi^c,\mu\rangle-U^*(\phi)=:J(\phi)\]
\[\sup_\psi\langle\psi,\mu\rangle-U^*(\psi^c)=:I(\psi)\]
\[U(\rho)=\int_\Omega u_\infty(\rho(x))+V(x)\rho(x)\,dx.\]
\(\rho(x)=(u^*_\infty)'(\phi(x)-V(x))\) guaranteed to be \(0\) on obstacle.
Remark
\[U^*(\phi)=\int_\Omega u^*_\infty(\phi(x)-V(x))\,dx\]
☇
\(H\) is the Sobolev space
\[\|h\|_H^2=\int_\Omega \alpha_1|\nabla h(x)|^2+\alpha_2|h(x)|^2\,dx\]
\[J(\phi)=\langle\phi^c,\mu\rangle-U^*(\phi)\]
\[I(\psi)=\langle\psi,\mu\rangle-U^*(\psi^c)\]
Recall
Jacobs, Lee, L. (’21)
A L G O R I T H M
Assume that
$$0\le -\delta^2\!J(\phi)(h,h) \le \lVert h\rVert_H^2$$
for any \(\phi,h\in H\). Then the iterations
$$\phi_{k+1}=\phi_k+\nabla_{\!H} J(\phi_k)$$
converge to the supremum of \(J\).
Fundamental lemma in optimization:
Want Hessian bound
\[0\le -\delta^2\!J(\phi)(h,h)\le \|h\|_H^2\]
\(J=F-U^*\) with \(F(\phi)=\int_\Omega\phi^c\,d\mu\).
$$ -\delta^2\!F(\phi)(h,h)=\tau\int_\Omega |\nabla h(x)|^2_{g(\phi)}\,(T_{\phi\#}\mu)(dx) $$
\[U^*(\phi)=\int_\Omega u^*_\infty(\phi(x))\,dx\]
\[\delta^2\!U^*(\phi)(h,h)\le C_\textrm{trace} \int_{\tilde\Omega} |\nabla h(x)|^2+|h(x)|^2\,dx\]
\[\delta^2U^*(\phi)(h,h)=\int_{\{\phi=0\}} |h(z)|^2\,d\sigma(z)\]
Operations on a grid with \(N\) points:
- \(c\)-transform: \(O(N)\)
- \(T_{\phi_n} : O(N) \)
- \(\Delta^{-1}:O(N\ln N)\)
Novelty of the approach:
1) a careful analysis of the Hessian of the objective function
2) the back-and-forth scheme which boosts the convergence
Slow diffusion (porous medium eq)
\(V(x)=-\sin(5\pi x_1)\sin(3\pi x_2)\)
\(512\times 512\) points
\(m=2\)
\(m=4\)
Slow diffusion
\(m=4\)
\(V(x)=\|x-a\|^2\)
\(512\times 512\) points
Incompressible
\(V(x)=\|x-a\|^2\)
\(1024\times 1024\) points
Aggregation-diffusion
\[U(\rho)=\int \rho(x)^3dx+\iint |x-y|^2\rho(x)\rho(y)\,dxdy\]