Flavien Léger
joint works with Pierre-Cyril Aubin-Frankowski &
Gabriele Todeschi and François-Xavier Vialard
Minimize \[\mathcal{E}\colon X\to\mathbb{R}\cup\{+\infty\}\]
using a function \(c(x,y)\) as a “movement limiter”
⏵ \(X\) : possibly infinite-dimensional
⏵ \(\mathcal{E},c\) : possibly nonsmooth
(Jacobs–Lee–L ‘21)
Implicit and explicit methods with
a cost \(c(x,y)\)
Evolution variational inequalities (EVIs)
NNCC spaces
\((X,d)\) metric space
\(X\) an arbitrary set
Proximal point method
cost function \(c\colon X\times X\to\mathbb{R}\)
\(c(x,y)\geq 0\), \(c(x,x)=0\)
Remarks/
Motivations
⏵ Define gradient flows in nonsmooth settings
⏵ \(c(x,y)\) as a proxy for \(d^2(x,y)\)
(Ambrosio–Gigli–Savaré ’05)
(Rankin–Wong ’24)
(AM)
How to do an explicit method with cost \(c(x,y)\) ?
\(Y\) another set
\(X\) an arbitrary set
Definition. \(\mathcal{E}\) is c-concave if there exists \(h\colon Y\to \mathbb{R}\cup\{+\infty\}\) s.t. \[\mathcal{E}(x)=\inf_{y\in Y}c(x,y)+h(y).\]
Smallest such \(h\) is the c-transform \(\mathcal{E}^c(y)=\sup_{x\in X} \mathcal{E}(x)-c(x,y).\)
\(\mathcal{E}\) is \(c\)-concave
\(\mathcal{E}\) is not \(c\)-concave
\(c(x,y)=\frac{L}{2}\lVert x-y\rVert^2\)
\(\mathcal{E}\) is \(c\)-concave \(\iff \nabla^2 \mathcal{E}\preccurlyeq L\, I_{d\times d}\)
Example. \(X=Y=\mathbb{R}^d\)
\(c(x,y)+\mathcal{E}^c(y)\)
\(\mathcal{E}\)
\(\mathcal{E}\)
Explicit algorithm
Suppose \(\mathcal{E}\) is c-concave:
Nonsmooth settings
Smooth settings
\(X,Y\) finite-dimensional manifolds,
twisted \(c\in C^1(X\times Y)\),
\(\mathcal{E}\in C^1(X)\)
\(\mathcal{E}\)
(“Gradient descent with a general cost” L–Aubin-Frankowski ‘23)
Explicit: assume \(\mathcal{E}\) is c-concave
Alternating Minimization (AM) of \(\phi\)
Implicit
Implicit+Explicit (forward–backward): \(\mathcal{E}(x)=\mathcal{E}_1(x)+\mathcal{E}_2(x)\)
Assume \(\mathcal{E}_2\) is c-concave
Implicit and explicit methods
with a cost \(c(x,y)\)
Evolution variational inequalities (EVIs)
NNCC spaces
Definition. Let \(\lambda\in[0,1)\). We say that \((x_n,y_n)_n\) satisfy the EVI if \(\forall n\geq 0\),
\[\forall x\in X,y\in Y,\quad(1-\lambda)\phi(x_n,y_n)+\phi(x,y_{n+1})\leq \phi(x,y)+(1-\lambda)\phi(x,y_n).\]
\(X,Y\) two arbitrary sets,
\(\phi\colon X\times Y\to\mathbb{R}\cup\{+\infty\}\) proper
⏵ Nonsmooth, intrinsic
⏵ Condition on \(\phi\) and on the choice of iterates
T H E O R E M (L–Aubin-Frankowski '23)
EVI \((\lambda=0)\)
Euclidean
Consider implicit method
\(\phi(x,y)\): extends the five-point property of Csiszár–Tusnády ’84
\((X,d)\) non-positively curved, Mayer/Jost
Ambrosio–Gigli–Savaré
\(\mathcal{E}\) convex on geodesics
\(\mathcal{E}\) convex
\(\mathcal{E}\) convex on curves \(x(t)\) such that \(d^2(x,x_{n-1})\) is \(1\)-convex, i.e. \(t\mapsto d^2(x(t),x_{n-1})-t^2 \,d^2(x(1),x(0))\) is convex
Suppose the EVI holds:
With \(\lambda=0\) then
\[\phi(x_n,y_n)\leq \phi(x,y)+\frac{\phi(x,y_0)-\phi(x_0,y_0)}{n}\]
With \(\lambda>0\) then
\[\phi(x_n,y_n)\leq \phi(x,y)+\frac{\lambda[\phi(x,y_0)-\phi(x_0,y_0)]}{\Lambda^n-1},\]
\(\Lambda\coloneqq(1-\lambda)^{-1}>1\).
T H E O R E M (L–Aubin-Frankowski '23)
Implicit and explicit methods
with a cost \(c(x,y)\)
Evolution variational inequalities (EVIs)
NNCC spaces
D E F I N I T I O N (L–Todeschi–Vialard '24)
\((X\times Y,c)\) is an NNCC space if for each \((x_0,x_1,\bar y)\in X\times X\times Y\), there exists a path \(x(\cdot)\) from \(x_0\) to \(x_1\) such that \(\forall y\in Y\), \[c(x(t),\bar y)-c(x(t),y)\leq (1-t)[c(x_0,\bar y)-c(x_0,y)]+t[c(x_1,\bar y)-c(x_1,y)].\]
\((x(t),\bar y)\) is called a generalized c-segment.
\(X, Y\) two arbitrary sets, \(c\colon X\times Y\to\mathbb{R}\cup\{+\infty\}\).
(Think: \(t\mapsto c(x(t),\bar y)-c(x(t),y)\) is convex)
History. Variant of the Ma–Trudinger–Wang (MTW) condition studied by Kim and McCann.
Original setting is smooth and finite-dimensional \(c\in C^4(X\times Y)\).
Ma, Trudinger, Wang, Loeper, Kim, McCann, Villani, Figalli, Guillen, Kitagawa, Loeper
Basic finite-dim examples:
Theory. NNCC preserved by products, projections, pullbacks.
Stable under Gromov–Hausdorff.
⏵ \((X\times X,c)\) NNCC space
⏵ \(\mathcal{E}(\cdot)-\mu\,c(\cdot,x_n)\) convex on generalized c-segments \((x(t),x_{n-1})\)
Then EVI.
T H E O R E M (L–Todeschi–Vialard '24)
(EVI)
Focus on implicit method \(\phi(x,y)=\mathcal{E}(x)+c(x,y)\)
⏵ Unique argmins
⏵ \(c\) satisfies \(\displaystyle\liminf_{t\to 0}\frac{c(x(t),x(0))}{t}=0.\)
Then EVI.
T H E O R E M (L–Todeschi–Vialard '24)
(EVI)
Focus on implicit method \(\phi(x,y)=\mathcal{E}(x)+c(x,y)\)
⏵ Unique argmins
⏵ \(c\) satisfies \(\displaystyle\liminf_{t\to 0}\frac{c(x(t),x(0))}{t}=0.\)
⤴
Sublinear (\(\mu=0\)) and linear (\(\mu>0\)) convergence rates
⏵ \((X\times X,c)\) NNCC space
⏵ \(\mathcal{E}(\cdot)-\mu\,c(\cdot,x_n)\) convex on generalized c-segments \((x(t),x_{n-1})\)
\(X\), \(Y\) Polish spaces, \(c\in C(X\times Y)\).
If \((X\times Y,c)\) is an NNCC space then so is \((\mathcal{P}(X)\times \mathcal{P}(Y), \mathcal{T}_c)\).
Corollary: \((\mathcal{P}_2(X)\times \mathcal{P}_2(X), W_2^2)\) is an NNCC space when \(X=\)
\[\mathcal{T}_c(\mu,\nu)=\inf_{\pi\in\Pi(\mu,\nu)}\int c(x,y)\,d\pi\]
T H E O R E M (L–Todeschi–Vialard '24)
Generalized c-segments \((\mu(t),\nu)\):
⏵ \((T_0,S)\) optimal coupling of \((\mu_0,\nu)\)
⏵ \((T_1,S)\) optimal coupling of \((\mu_1,\nu)\)
⏵ \(\forall \omega\in\Omega\), \(t\mapsto (T_t(\omega),S(\omega))\) c-segment
⏵ \(\mu(t)=(T_t)_\#\mathbb{P}\)
\(\nu\)
\(\mu\)
Bures–Wasserstein
Gromov–Wasserstein \(\mathbf{X}=[X,f,\mu]\) and \(\mathbf{Y}=[Y,g,\nu]\)
\[\operatorname{GW}^2(\mathbf{X},\mathbf{Y})=\inf_{\pi\in\Pi(\mu,\nu)}\int\lvert f(x,x')-g(y,y')\rvert^2\,d\pi(x,y)\,d\pi(x',y')\,.\]
Unbalanced OT
Hellinger, Fisher–Rao