Flavien Léger
joint works with Pierre-Cyril Aubin-Frankowski &
Gabriele Todeschi and François-Xavier Vialard
Minimize E:X→R∪{+∞}
using a function c(x,y) as a “movement limiter”
⏵ X : possibly infinite-dimensional
⏵ E,c : possibly nonsmooth
(Jacobs–Lee–L ‘21)
Implicit and explicit methods with
a cost c(x,y)
Evolution variational inequalities (EVIs)
NNCC spaces
(X,d) metric space
X an arbitrary set
Proximal point method
cost function c:X×X→R
c(x,y)≥0, c(x,x)=0
Remarks/
Motivations
⏵ Define gradient flows in nonsmooth settings
⏵ c(x,y) as a proxy for d2(x,y)
(Ambrosio–Gigli–Savaré ’05)
(Rankin–Wong ’24)
(AM)
How to do an explicit method with cost c(x,y) ?
Y another set
X an arbitrary set
Definition. E is c-concave if there exists h:Y→R∪{+∞} s.t. E(x)=y∈Yinfc(x,y)+h(y).
Smallest such h is the c-transform Ec(y)=supx∈XE(x)−c(x,y).
E is c-concave
E is not c-concave
c(x,y)=2L∥x−y∥2
E is c-concave ⟺∇2E≼LId×d
Example. X=Y=Rd
c(x,y)+Ec(y)
E
E
Explicit algorithm
Suppose E is c-concave:
Nonsmooth settings
Smooth settings
X,Y finite-dimensional manifolds,
twisted c∈C1(X×Y),
E∈C1(X)
E
(“Gradient descent with a general cost” L–Aubin-Frankowski ‘23)
Explicit: assume E is c-concave
Alternating Minimization (AM) of ϕ
Implicit
Implicit+Explicit (forward–backward): E(x)=E1(x)+E2(x)
Assume E2 is c-concave
Implicit and explicit methods
with a cost c(x,y)
Evolution variational inequalities (EVIs)
NNCC spaces
Definition. Let λ∈[0,1). We say that (xn,yn)n satisfy the EVI if ∀n≥0,
∀x∈X,y∈Y,(1−λ)ϕ(xn,yn)+ϕ(x,yn+1)≤ϕ(x,y)+(1−λ)ϕ(x,yn).
X,Y two arbitrary sets,
ϕ:X×Y→R∪{+∞} proper
⏵ Nonsmooth, intrinsic
⏵ Condition on ϕ and on the choice of iterates
T H E O R E M (L–Aubin-Frankowski '23)
EVI (λ=0)
Euclidean
Consider implicit method
ϕ(x,y): extends the five-point property of Csiszár–Tusnády ’84
(X,d) non-positively curved, Mayer/Jost
Ambrosio–Gigli–Savaré
E convex on geodesics
E convex
E convex on curves x(t) such that d2(x,xn−1) is 1-convex, i.e. t↦d2(x(t),xn−1)−t2d2(x(1),x(0)) is convex
Implicit and explicit methods
with a cost c(x,y)
Evolution variational inequalities (EVIs)
NNCC spaces
D E F I N I T I O N (L–Todeschi–Vialard '24)
(X×Y,c) is an NNCC space if for each (x0,x1,yˉ)∈X×X×Y, there exists a path x(⋅) from x0 to x1 such that ∀y∈Y, c(x(t),yˉ)−c(x(t),y)≤(1−t)[c(x0,yˉ)−c(x0,y)]+t[c(x1,yˉ)−c(x1,y)].
(x(t),yˉ) is called a generalized c-segment.
X,Y two arbitrary sets, c:X×Y→R∪{+∞}.
(Think: t↦c(x(t),yˉ)−c(x(t),y) is convex)
History. Variant of the Ma–Trudinger–Wang (MTW) condition studied by Kim and McCann.
Original setting is smooth and finite-dimensional c∈C4(X×Y).
Ma, Trudinger, Wang, Loeper, Kim, McCann, Villani, Figalli, Guillen, Kitagawa, Loeper
Basic finite-dim examples:
Theory. NNCC preserved by products, projections, pullbacks.
Stable under Gromov–Hausdorff.
⏵ (X×X,c) NNCC space
⏵ E(⋅)−μc(⋅,xn) convex on generalized c-segments (x(t),xn−1)
Then EVI.
T H E O R E M (L–Todeschi–Vialard '24)
(EVI)
Focus on implicit method ϕ(x,y)=E(x)+c(x,y)
⏵ Unique argmins
⏵ c satisfies t→0liminftc(x(t),x(0))=0.
X, Y Polish spaces, c∈C(X×Y).
If (X×Y,c) is an NNCC space then so is (P(X)×P(Y),Tc).
Corollary: (P2(X)×P2(X),W22) is an NNCC space when X=
Tc(μ,ν)=π∈Π(μ,ν)inf∫c(x,y)dπ
T H E O R E M (L–Todeschi–Vialard '24)
Generalized c-segments (μ(t),ν):
⏵ (T0,S) optimal coupling of (μ0,ν)
⏵ (T1,S) optimal coupling of (μ1,ν)
⏵ ∀ω∈Ω, t↦(Tt(ω),S(ω)) c-segment
⏵ μ(t)=(Tt)#P
ν
μ
Bures–Wasserstein
Gromov–Wasserstein X=[X,f,μ] and Y=[Y,g,ν]
GW2(X,Y)=π∈Π(μ,ν)inf∫∣f(x,x′)−g(y,y′)∣2dπ(x,y)dπ(x′,y′).
Unbalanced OT
Hellinger, Fisher–Rao