Flavien Léger
joint work with:
Pierre Roussillon, François-Xavier Vialard and Gabriel Peyré
OT0(μ,ν)=π∈Π(μ,ν)inf∬c(x,y)dπ(x,y)
Π(μ,ν): probability measures with marginals μ and ν.
We assume that
Σ:=suppπ={(x,y(x)),x∈X}
X
Y
OT0(μ,ν)=ϕ,ψsup∫ϕdν−∫ψdμ
s.t.
u(x,y):=c(x,y)+ψ(x)−ϕ(y)≥0
u(x,y)=c(x,y)+ψ(x)−ϕ(y)≥0
Σ={(x,y):u(x,y)=0}
Example: c(x,y)=−x⋅y
u(x,y)=ψ(x)−ϕ(y)−x⋅y
=ψ(x∣x(y))
Bregman divergence
OTε(μ,ν)=π∈Π(μ,ν)inf∬c(x,y)dπ(x,y)+εH(π∣μ⊗ν)
πε vs π0?
Q U E S T I O N
X
Y
OTε(μ,ν)=ϕ,ψsup∫ϕdν−∫ψdμ−εln(∬e−ε1(c+ψ−ϕ)dμdν)
⟶πε(x,y)=e−ε1(c(x,y)+ψε(x)−ϕε(y))μ(x)ν(y)
Solve with Sinkhorn: ϕn→ψn→ϕn+1→…
π0 singular measure supported on Σ
πε smooth measure supported on X×Y
OT0(μ,ν)
OTε(μ,ν)
(YH Kim & RJ McCann ’10)
Riemannian metric g on Σ
c(x,y)+c(x+ξ,y+η)≤c(x+ξ,y)+c(x,y+η)
∣ξ∣,∣η∣≪1 yields
−Dxy2c(x,y)(ξ,η)≥0
Kim and McCann's idea:
consider g^=−Dxy2c as a semi-metric over all X×Y
h(U,V)=(∇^UV)⊥
Mean curvature H=tr(h) (a normal vector field)
(TΣ×TΣ→T⊥Σ)
(⋅)⊥ maps T⊥Σ to TΣ
g^=(0IdId0)
u(x,y)=ψ(x)−ϕ(y)−x⋅y
=ψ(x∣x(y))
Bregman divergence
g=D2ψ
Hessian metric
flat metric
In summary, we have
On X×Y
On Σ
Extrinsic curvatures
g^ semi-metric
m^ volume form
∇^ Levi-Civita connection
R^ scalar curvature
g metric
m volume form
∇ Levi-Civita connection
R scalar curvature
h second fundamental form
H mean curvature
∬X×Y(2πε)d/2e−u(x,y)/εf(x,y)dm^(x,y)=∫Σfdm+
ε∫Σ[−81Δ^f+41∇^Hf+161(∣H∣2−35∣h∣2−R+43R^)f]dm +ε2R(ε)
T H E O R E M
u vanishes on Σ
Σ
e−u(x,y)/ε
X
Y
Assumptions:
X=Y=Rd
0<λ≤D2u≤Λ
f and D2u∈W4,∞
Novelties:
1. Geometric expression
2. Quantitative remainder bound
∣R(ε)∣≤C ∥D2u∥W4,∞4∬X×Y(2πε/λ)d/2e−λ∣y−y(x)∣2/2ε∣D≤4f∣(x,y)dm^(x,y)
divπ(∇V)=divπ(H⊥)
H : mean curvature, H⊥ tangent to Σ
Solve for V on Σ
π : optimal transport plan
(supported on Σ)
∫Σdivπ(ξ)fdπ=−∫Σξ⋅∇fdπ
D E F I N I T I O N
divπ(∇V)=divπ(H⊥)
ψε=ψ0+2εln(e−Vμm)+o(ε)
T H E O R E M
u(x,y)≈−εln(m(x)μ(x)m(y)ν(y)e−V(x)e−V(y)πε(x,y))
Assumptions:
X=Y=Rd
0<λ≤D2u≤Λ
Log-concavity control over μ and ν
(ψε)ε uniformly bounded in H5
OTε(μ,ν)=OT0(μ,ν)−εln(2πε)d/2−εH(π∣m)
+8ε2 ∫Σ[∣∇ln(π/m)∣2+41R^+R+35∣h∣2−∣∇V∣2]dπ+o(ε2)
T H E O R E M
ε2 term was known (Conforti–Tamanini):
8ε2∫01FI(ρt)dt
8ε2 ∫Σ[∣∇ln(π/m)∣2+R+35∣h∣2−∣H∣2]dπ
We found:
ψε : solution to dual problem ψmaxJε(ψ) ψε : competitor
Step one
c∥∇h∥L22−εc∥∇h∥H32≤−δ2Jε(ψ)(h,h)
Step two
Choose competitor ψε such that
δJε(ψε)h≤Cε2∥∇h∥H3
Implies
c∥∇ψε−∇ψε∥L22−εc∥∇ψε−∇ψε∥H32≤−⟨δJε(ψε)−δJε(ψε),ψε−ψε⟩
The research leading to these results has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (Grant Agreement no. 866274)