Z-mappings

for mathematicians

Flavien Léger (inria)

Joint work with Alfred Galichon (NYU)

Introduction

Nonlinear and nonvariational equations


$$Q(u) = 0$$

Common structure to many problems in:

network flows, optimal transport, optimal control, interface dynamics, submodular functions...

Outline

1. Generalities

 

2. Theory and an algorithm

 

3. Examples

1. Generalities

We work on a network \((X,A)\) or domain \(\Omega\subset\mathbb{R}^d\).

 


$$Q(u) = 0$$
\(u\colon X\to\mathbb{R}\) or \(\Omega\to\mathbb{R}\).

x
y

Notation:

We write \(Q_x(u)\) for \(Q(u)(x)\)

We sometimes write \(u_x\) for \(u(x)\).

Z-mapping

\(Q\) is a Z-mapping if for all \(u,\tilde u\), for all \(x\),

D E F I N I T I O N

\left\{\begin{aligned} \tilde u &\ge u\\ \tilde u(x) &= u(x) \end{aligned}\right. \implies Q_x(\tilde u) \le Q_x(u).

Introduced by Rheinboldt '70, gross substitutes in economics

Definitions

 

  • isotone if for all \(u\), \(\tilde u\),
            \(u\le \tilde u \implies Q(u)\le Q(\tilde u) \)

  • inverse isotone if for all \(u\), \({\tilde u}\),
            \[Q(u)\le Q(\tilde u) \implies u\le \tilde u\]

Remark: If \(Q\) is inverse isotone then it is injective.

An M-mapping is an inverse isotone Z-mapping.

D E F I N I T I O N

We say that a mapping \(Q\) is

Example: network flow

\[-\mathrm{div} M(u)=f\]

\(M\colon\mathbb{R}^X\to\mathbb{R}^A\) such that:

\(M_{xy}(u)\) increasing in \(u_y\) decreasing in \(u_x\).

Ex: \(M_{xy}(u)=u_y-u_x\),

      \(M_{xy}(u)=e^{u_y-u_x}\)

 

\(Q(u)=-\mathrm{div} M(u) - f\)   is a Z-mapping.

x
y
M_{xy}(u)

\(\longrightarrow -\Delta u = f\)

\(\longrightarrow\) Entropic transport

"flow mapping"

Example: network flow (PDE)

\[-\mathrm{div} \Big(M(x,u(x),\nabla u(x))\Big)=f\]

\(M \colon\Omega\times\mathbb{R}\times \mathbb{R}^d\to\mathbb{R}^d\) such that:

\(M(x,z,p)\) is increasing in \(z\) and monotone in \(p\): $$\langle M(x,z,\tilde p)-M(x,z,p), \tilde p - p\rangle \ge 0$$

\(Q(u)=-\mathrm{div} M(u) - f\)   is a Z-mapping.

quasilinear PDE

Example: optimal control

\[\min_{(a_t)}\mathbb{E}\sum_{t=0}^{T}c(x_t,a_t) \]

subject to:

 

\(T\) = stopping time

(Shortest path, stochastic shortest path, Markov Decision Process)

\(=:u(x)\)

Dynamic programming principle:

\left\{\begin{aligned} & \mathbb{P}(x_{t+1}= y|x_t=x,a_t=a) = p(y|x,a)\\ & x_0 =x \end{aligned}\right.

\(=:T_x(u)\)

\[u(x)=\min_{a}\Big[c(x,a)+\sum_{y\in X}u(y)p(y|x,a)\Big]\]

x

Example: optimal control

(Shortest path, stochastic shortest path, Markov Decision Process)

Solve \(u=T(u)\) with    \(u\le \tilde u\implies T(u)\le T(\tilde u)\)

 

\(Q(u)\coloneqq u - T(u)\) is a Z-mapping.

\[T_x(u) = \min_{a}\Big[c(x,a)+\sum_{y\in X}u(y)p(y|x,a)\Big]\]

Example: optimal control (PDE)

\[u(x) = \inf_{v} \int_0^T L(x_t,v_t)\,dt\]

subject to: \(u = 0\) on \(\partial\Omega\)

Then \(Q_x(u)= H(x,-\nabla u(x))\) is a Z-mapping.

Ex (Eikonal): 

L(x,v)=\begin{cases}1 & \text{if } \lvert v\rvert \le 1\\ \infty & \text{otherwise} \end{cases}
H(x,p) = \lvert p\rvert - 1
|\nabla u| = 1

see also: viscosity solutions

2. Theory and an algorithm

In this section:  Z-mapping and \(Q_x(u)\) isotone in \(u_x\)Domain is discrete \((X,A)\).

Q(u)=0

D E F I N I T I O N

\(u\) is a subsolution if

\[Q(u) \le 0\]

\(u\) is a supersolution if

\[Q(u) \ge 0.\]

Jacobi

D E F I N I T I O N

The Jacobi transform of \(u\) is
    \[u^*(x) = \sup\{s\in\R : Q_x(s,u_{-x})\le 0\}.\]

Jacobi algorithm

\[u_{n+1} = u_n^*\]

\(Q_x(u^*_x,u_{-x})=0\)

A L G O R I T H M

Properties of Jacobi 

Let \(Q\) be a continuous Z-mapping.

If \(Q(u)\le 0\) then
    \[Q(u^*)\le 0 \quad\text{and}\quad  u^* \ge u\] 

P R O P O S I T I O N

Useful for algorithm or showing existence of solutions:

if \(Q(u_0)\le 0\), then

\[Q(u_n)\le 0, \quad u_{n+1}\ge u_n\]

 "method of subsolutions", "Perron's method"...

Let \(Q\) be a continuous Z-mapping. Then

\[u\le \tilde u \implies u^*\le \tilde{u}^*\]

P R O P O S I T I O N

Useful when sandwich \(v_0\le u_0\le w_0\), then

\[v_n\le u_n\le w_n\]

\(v_n\): subsolution, thus increasing to a solution

\(w_n\): supersolution, thus decreasing to a solution

Properties of Jacobi 

Rheinbolt ’70

M-mappings

Suppose that a Z-mapping \(Q\) satisfies:

\[u\mapsto \psi(Q(u)) \text{ strictly isotone}\]

with \(\psi\) isotone and more "strictness" assumptions

Then \(Q\) is an M-mapping.

Recall that M-mapping = Z-mapping and comparison

\[Q(u)\le Q(\tilde u)\implies u\le \tilde u\]

T H E O R E M

L., Galichon '2022

ex:   \(\sum_xQ_x(u)\)

Berry, Gandhi, Haile '2013; Chen, Choo, Galichon, Weber '2021

M-mappings

Suppose that a Z-mapping \(Q\) satisfies:

\[\lambda\mapsto Q(e_\lambda u) \text{ strictly isotone}\]

with \(\lambda\mapsto e_\lambda u\) isotone and more "strictness" assumptions

Then \(Q\) is an M-mapping.

T H E O R E M

L., Galichon '2022

Example: generated Jacobian equations

\((X,\mu)\) and \((Y,\nu)\)

\(G\colon X\times Y\times \mathbb{R}\to\mathbb{R}\) such that  \(G(x,y,z)\) decreasing in \(z\).

Ex: \(G(x,y,z) = \langle x,y\rangle - z\).

Given \(v\colon Y\to\mathbb{R}\), let 

$$T_v(x)=\argmax_y G(x,y,v(y))$$

Goal: find \(v\) such that 

$$T_{v\#}\mu=\nu$$

3. Examples

3.1. Generated Jacobian equations

\(Q(u) = \nu-T_{v\#}\mu\)   is a Z-mapping

\((X,\mu)\) and \((Y,\nu)\),   \(G\colon X\times Y\times \mathbb{R}\to\mathbb{R}\) with \(G(x,y,z)\) decreasing in \(z\).

Given \(v\colon Y\to\mathbb{R}\), let

$$T_v(x)=\argmax_y G(x,y,v(y))$$

Goal: find \(v\) such that 

$$T_{v\#}\mu=\nu$$

(X,\mu)
(Y,\nu)

3. Examples

Particular case: Optimal transport

\(G(x,y,z)=-c(x,y)-z\)

Rem:discontinuity \(\to\) need regularization.

Real auction, or replace min by softmin: Entropic OT. Jacobi is Sinkhorn.

\[T_{v\#}\mu=\nu\]

Algorithm: Jacobi  = Bertsekas' (naive) auction algorithm

$$T_v(x)=\argmax_y -c(x,y)-v(y)$$

PDEs: Monge–Ampère 

3. Examples

“Particular case”: Gale–Shapley

\(G(x,y,z)=\alpha(x,y)-\iota_{\{\gamma(x,y)\ge z\}}\)

\[T_{v\#}\mu=\nu\]

Algorithm: Jacobi ≈ Gale–Shapley algorithm

$$T_v(x)=\argmax_{\{y : \gamma(x,y)\ge v(y)\}} \alpha(x,y)$$

(Gale–Shapley ’62)

3.2. Mean curvature motion

mean curvature motion = \(L^2\) gradient flow of
\[P(u)=\frac12\int_{\mathbb{R}^d} \lvert\nabla u\rvert\,dx\]

(\(u=1_K\)).   Heat content:

\[P_\varepsilon(u)=-\frac{1}{\varepsilon}\iint G_\varepsilon(x-y) u(x) (1-u(y))\,dxdy + \int \chi(u(x))\,dx\]

 

submodular, nonconvex

\(Q(u)=DP(u)\) is a Z-mapping.

3. Examples

Algorithm: Jacobi = MBO

(Merriman–Bence–Osher ’92)

Thank you!