\begin{aligned}
& n_c(T)=\int_{E_c}^{\infty} g_c(E) f(E) d E=\int_{E_c}^{\infty} g_c(E) \frac{1}{e^{(E-E_f) / k_B T}+1} d E \\[20pt]
& p_v(T)=\int_{-\infty}^{E_v} g_v(E)(1-f(E)) d E=\int_{-\infty}^{E_v} g_v(E)\left(\frac{1}{e^{(E_f-E) / k_B T}+1}\right) d E
\end{aligned}
g_c(E) = \frac{m^*_c}{\hbar^2 \pi^2} \sqrt{\frac{2 m (E-E_c)}{\hbar^2}}
g_v(E) = \frac{m^*_v}{\hbar^2 \pi^2} \sqrt{\frac{2 m (E_v-E)}{\hbar^2}}
NON-DEGENERATE SEMICONDUCTOR APPROXIMATION
\begin{align*}
\end{align*}
\begin{aligned}
& E_c-E_f \gg k_B T \\
& E_f-E_v \gg k_B T
\end{aligned}
E_f=E_v+\frac{E_g}{2}+\frac{3}{4} k_B T \ln \left(\frac{m_v^*}{m_c^*}\right)+k_B T \ln \left(\frac{N_D}{n_i}\right)=E_{f,i}+k_B T \ln \left(\frac{N_D}{n_i}\right)
E_f=E_v+\frac{E_g}{2}+\frac{3}{4} k_B T \ln \left(\frac{m_v^*}{m_c^*}\right)-k_B T \ln \left(\frac{N_A}{n_i}\right)=E_{f,i}-k_B T \ln \left(\frac{N_A}{n_i}\right)