E_{f,n}=E_v+\frac{E_g}{2}+\frac{3}{4} k_B T \ln \left(\frac{m_v^*}{m_c^*}\right)+k_B T \ln \left(\frac{N_D}{n_i}\right)=E_{f,i}+k_B T \ln \left(\frac{N_D}{n_i}\right)
E_{f,p}=E_v+\frac{E_g}{2}+\frac{3}{4} k_B T \ln \left(\frac{m_v^*}{m_c^*}\right)-k_B T \ln \left(\frac{N_A}{n_i}\right)=E_{f,i}-k_B T \ln \left(\frac{N_A}{n_i}\right)
N-Type Doping
P-Type Doping
BUILT IN VOLTAGE \(V_0\): FERMI LEVELS
x
E
E_{f,p}
P-Type
\Delta E = E_{f,n} -E_{f,p}
x
E
E_{f,n}
N-Type
BUILT IN VOLTAGE \(V_0\): FERMI LEVELS
eV_0 = E_{f,n} -E_{f,p}
E_n
P-Type
E_{f}
N-Type
x
E_p
BUILT IN VOLTAGE \(V_0\): FERMI LEVELS
\begin{dcases}
E_{f,n}=E_{f,i}+k_B T \ln \left(\frac{N_D}{n_i}\right) \\[10pt]
E_{f,p}=E_{f,i}-k_B T \ln \left(\frac{N_A}{n_i}\right)
\end{dcases}\\[5pt]
\Downarrow \\[5pt]
V_{0}=\frac{k_B T}{e} \ln \left(\frac{N_A N_D}{n_i^2}\right)