王赫
hewang@ucas.ac.cn
中国科学院大学 · 国际理论物理中心(亚太地区)
Reference:
GWTC-3
The First GW Event: GW150914
—— Bernard F. Schutz
DOI:10.1063/1.1629411
GW Data characteristics:
Noise: non-Gaussian and non-stationary
Signal: A low signal-to-noise ratio (SNR) which is typically about 1/100 of the noise amplitude (-60 dB)
Data quality improvement
Credit: Marco Cavaglià
LIGO-Virgo data processing
GW waveform modeling
GW searches
Astrophsical interpretation of GW sources
PRL, 2018, 120(14): 141103.
Matched filtering techniques (匹配滤波方法)
In Gaussian and stationary noise environments, the optimal linear algorithm for extracting weak signals
... under Gaussian stationary noise.
PRD, 2018, 97(4): 044039.
GW Data characteristics:
Noise: non-Gaussian and non-stationary
Signal: A low signal-to-noise ratio (SNR) which is typically about 1/100 of the noise amplitude (-60 dB)
Convolutional Neural Network (ConvNet or CNN)
Matched-filtering Convolutional Neural Network (MFCNN)
GW150914
GW151012
MFCNN
MFCNN
GPS time
GW150914
GW151012
GPS time
Wang H, et al. PRD (2020)
GW170817
GW190412
GW190814
mass distribution
Ruan WH, Wang H, et al. PLB (2023)
Matched-filtering Convolutional Neural Network (MFCNN)
Wang H, et al. PRD (2020)
Frequency domain
(whitening)
Time domain
(normalizing)
(matched-filtering)
where \(S_n(|f|)\) is the one-sided average PSD of \(d(t)\)
In the 1-D convolution (\(*\)), given input data with shape [batch size, channel, length] :
(A schematic illustration for a unit of convolution layer)
Matched-filtering Convolutional Neural Network (MFCNN)
Wang H, et al. PRD (2020)
Matched-filtering Convolutional Neural Network (MFCNN)
Wang H, et al. PRD (2020)
An example of transfer function:
CNN
RNN
H1
L1
search scope
(MFCNN group) Wang H, et al. PRD (2023)
arXiv:2212.14283, DOI: 10.21203/rs.3.rs-2452860/v1
BEFORE
AFTER
BEFORE
AFTER
Bacon P. et al. arXiv: 2205.13513
Bacon P. et al. arXiv: 2205.13513
Murali C & Lumley D. arXiv: 2210.01718
Wei W and Huerta E A. PLB 2020
Chatterjee C, Wen L, et al. PRD 2021
arXiv:2212.14283, DOI: 10.21203/rs.3.rs-2452860/v1
GW170823
arXiv:2212.14283, DOI: 10.21203/rs.3.rs-2452860/v1
WaveFormer
Transformer: 750x / 2yrs
Recent Updates to Rapid PE
PRD 99, 124044 (2019)
Combining inferences from multiple sources
for _ in range(num_of_audiences):
print('Thank you for your attention! 🙏')
This slide: https://slides.com/iphysresearch/gr2023
Recent Updates to Rapid PE
PRD 99, 124044 (2019)
Combining inferences from multiple sources
©Floor Broekgaarden (repo)
LIGO-G2300554
2016年,AlphaGo 第一版发表在了 Nature 杂志上
2021年,AI预测蛋白质结构登上 Science、Nature 年度技术突破,潜力无穷
2022年,DeepMind团队通过游戏训练AI发现矩阵乘法算法问题
《达摩院2022十大科技趋势》将 AI for Science 列为重要趋势
“人工智能成为科学家的新生产工具,催生科研新范式”
AI for Science:为科学带来了模型与数据双驱动的新的研究范式
AI + 数学、AI + 化学、AI + 医药、AI + 物理、AI + 天文 ...
AlphaGo 围棋机器人
AlphaTensor 发现矩阵算法
AlphaFold 蛋白质结构预测
数据质量的提升是一个非常复杂的问题,超过 20 万个传感器通道的数据会决定引力波科学数据通道的质量
降低引力波数据中非高斯的短时脉冲波干扰 (Glitch),会有助于减少引力波信号误报率
引力波探测数据中去除 Glitch,是一个多分类问题
Extremely Loud Helix Koi Fish
Glitch cases
non-Gaussianess
Ormiston R, et al. PRR, 2020