James B. Wilson

Logical Alchemy: Turn False into True.

Chemical Alchemy: Turn Straw into Gold.

Logical Alchemy: Turn False into True.

(L)anguage, (I)ntroduction, & (E)liminiation of \(\Rightarrow\)

If \(x\geq y\) then \(x^2\geq y^2\)

\(x\geq y\quad \Rightarrow \quad x^2\geq y^2\)

if x >= y then
   do something!

Lets deal with truth and leave computation "if -- then --" untill later, 

Rule breaking

\(x^2\geq y^2\), if \(x\geq y\)

When \(x\geq y\) it follows that \(x^2\geq y^2\)

 

if = when= because ....

then = implies = follows = thus...

Non-implications that use the same language

A triangle is equilateral if all its sides have equal length.

Term being defined

"If" used to separate  equivalent clause

Definitions are names/symbols to substitute often lengthy or technical expressions, e.g. \(x:=\sqrt{17}^{\log 541}\)

(L)anguage, (I)ntroduction, & (E)liminiation of \(\Rightarrow\)

If it rains then the ground is wet.

\[\begin{array}{rl} \Gamma & \vdash P\Rightarrow Q\\ \Gamma & \vdash P \\ \hline \Gamma & \vdash Q\end{array}\qquad (E_{\Rightarrow})\]

(E)LIMINATION 

 

"Modus Ponens"

It rained.

Therefore the ground is wet.

Premise

Conclusion

\[\begin{array}{rl} &  P\Rightarrow Q\\  &  P \\ \hline &  Q\end{array}\qquad (E_{\Rightarrow})\]

(L)anguage, (I)ntroduction, & (E)liminiation of \(\Rightarrow\)

If \(x\geq y\) then \(x^2\geq y^2\) 

\[\frac{P\vdash Q}{ P\Rightarrow Q}\qquad (I_{\Rightarrow})\]

(I)NTRODUCTION

\(\Gamma\): Natural numbers \(m\geq n\) means there is a \(k\) where \(m=n+k\)

\begin{aligned} m\cdot m & = (n+k)(n+k)\\ & = n^2+2nk+k^2\\ & = n^2 + j & j:=2nk+k^2\\ m^2 & \geq n^2 \end{aligned}

 \(m\geq n\) means there is a \(k\) with \(m=n+k\)

P

Q

Process states \(\Gamma,P\vdash Q\)

If \(x\geq y\) then \(x^2\geq y^2\)

CONTEXT MATTERS

If \(-3\geq -4\) then

\((-3)^2=9\geq 16=(-4)^2\)

In the natural numbers, if \(x\geq y\) then \(x^2\geq y^2\)

In the integers, \(-3\geq -4\) but

\((-3)^2=9\geq 16=(-4)^2\)

\[\frac{\Gamma, P \vdash Q}{\Gamma \vdash P\Rightarrow Q}\]

\(\Gamma\)

\(\Gamma\)

If -- then -- 

<imp> ::= if <term> then <term>
<imp> ::= <term> => <term>

\(\langle imp\rangle ::= \langle term\rangle \Longrightarrow \langle term\rangle\)

\[\frac{\Gamma, P\vdash Q}{\Gamma \vdash P\Rightarrow Q}\qquad (I_{\Rightarrow})\]

(I)NTRODUCTION

(naive version)

\[\begin{array}{rl} \Gamma & \vdash P\Rightarrow Q\\ \Gamma & \vdash P \\ \hline \Gamma & \vdash Q\end{array}\qquad (E_{\Rightarrow})\]

(E)LIMINATION 

(naive version/ modus ponens)

(L)ANGUAGE

 

 

Logical Alchemy: Turn False into True.

If -- then -- (Vagueness)

If pigs can fly then pigs can get bird flu.

This is a valid statement because pigs can can get bird flu.

 

However, pigs cannot fly.

What explains this situation?

If -- then -- (Vagueness)

If pigs can fly then pigs can get bird flu.

It is seems illogical to argue that a false premise leads to a true conclusion

What explains this situation?

False Premise P

True conclusion Q

However context is always available as well!

Context (maybe implicit) may be responsible for true conclusion, i.e. \(\Gamma \vdash P\)

Classical & Intuitionistic context even have \(\bot \vdash Q\)

If -- then -- (Vagueness)

False Premise P

True conclusion Q

\(\Rightarrow \)

This is a confusing abbreviation of reality.

Instead read this as:

Context, or

False Premise P

\(\Rightarrow \)

True conclusion Q

Since context is often implicit never forget to ask if context is responsible for implications.

Summary

  • False \(\not\Rightarrow\) True,
  • but Context implies True \(\Gamma \vdash \top\) and context is always around for implication.
  • This is still a naive take on implication, several things are still to consider
    • Process (Intuitionistic) vs. Incidence (Classical)
    • Resource counting (Linear logic)