2020 James B. Wilson
Colorado State University
\(P_b=\{a\mid a\equiv b\}\)
\(a\mapsto P_b\), \(a\in P_b\)
\(a\equiv b\pmod{f}\Leftrightarrow f(a)=f(b)\)
Know as: The Fundamental Homomorphism Theorem
\(P_b=\{a\mid a\equiv b\}\)
\(A/_{\equiv}:=\{P_b\mid b\in A\}\)
\(a\mapsto P_b\), \(a\in P_b\)
\(a\equiv b\pmod{\ker f}\Leftrightarrow f(a)=f(b)\)
(Illustrated for binary operations only.)