2020 James B. Wilson
Colorado State University
The following concepts are true for groups but not for most algebraic structures. But groups are so popular that many jump to these shortcuts without warning.
Composition Algebra: \(A\) has length & \([*,1,\div,+,-,0]\)-arithmetic
Theorem( Hurwitz) There 4 families like this:
Boring start \(U(\mathbb{R})=\{z\mid |z|=1\}=\{\pm 1\}\cong \mathbb{Z}/2\) but with complex gets interesting....
Try with quaternions.
Try with octonions...
\[PSL_2(K)= \left\{\begin{bmatrix} a & b\\ c & d\end{bmatrix} \middle| ad-bc=1\right\}\mod{\pm I_1}\]
Best explored as "fractional linear maps":
\[z\mapsto \frac{az+b}{cz+d}\]
Notice scaling by negatives top and bottom will not change it.
\[PSL_2(K)= \left\{\begin{bmatrix} a & b\\ c & d\end{bmatrix} \middle| ad-bc=1\right\}\mod{\pm I_1}\]
If \(|K|=q\) then
\[PSL_2(K)= \left\{\begin{bmatrix} a & b\\ c & d\end{bmatrix} \middle| ad-bc=1\right\}\mod{\pm I_1}\]
Generators:
\[\begin{bmatrix} 1 & 1 \\ 0 & 1\end{bmatrix},\begin{bmatrix} 1 & 0 \\ 1 & 1\end{bmatrix}\]
I.e. it can do row elimination except for the scalars and permuations.