2020 James B. Wilson
Colorado State University
Prove varieties are closed to Quotients and Homomorphic images.
\(\frac{x^2+1}{x-2}\)
\(x^2+1\)
\((x-2)^{-1}\)
\(x^2\)
\(1\)
\(x\)
\(x\)
\(u^{-1}\)
\(u=x-2\)
\(+\)
\(\times\)
\(\times\)
\(x\)
\(-(1+1)\)
\(-v\)
\(v=1+1\)
\(1\)
\(1\)
\(+\)
\(u\)
\(^{-1}\)
\(v\)
\(-\)
\(+\)
\(\circ\)
\(\circ\)
Operator
Variable
Polynomial/Word
(Meta-language)
A generalized polynomial
\(f\left(\frac{x^2+1}{x-2}\right)\)
\(x^2+1\)
\((x-2)^{-1}\)
\(x^2\)
\(1\)
\(x\)
\(x\)
\(u^{-1}\)
\(u=x-2\)
\(+\)
\(\times\)
\(\times\)
\(x\)
\(-(1+1)\)
\(-v\)
\(v=1+1\)
\(1\)
\(1\)
\(+\)
\(u\)
\(^{-1}\)
\(v\)
\(-\)
\(+\)
\(\circ\)
\(\circ\)
Operator
Variable
Polynomial/Word
(Meta-language)
Apply a homomorphism \(f:A\to B\)
\(f\left(\frac{x^2+1}{x-2}\right)\)
\(f(x^2+1)\)
\(f((x-2)^{-1})\)
\(x^2\)
\(1\)
\(x\)
\(x\)
\(u^{-1}\)
\(u=x-2\)
\(+\)
\(\times\)
\(\times\)
\(x\)
\(-(1+1)\)
\(-v\)
\(v=1+1\)
\(1\)
\(1\)
\(+\)
\(u\)
\(^{-1}\)
\(v\)
\(-\)
\(+\)
\(\circ\)
\(\circ\)
Operator
Variable
Polynomial/Word
(Meta-language)
Apply a homomorphism \(f:A\to B\)
\(f\left(\frac{x^2+1}{x-2}\right)\)
\(f(x^2+1)\)
\(f((x-2)^{-1})\)
\(f(x^2)\)
\(f(1)\)
\(x\)
\(x\)
\(f(u^{-1})\)
\(u=x-2\)
\(+\)
\(\times\)
\(\times\)
\(x\)
\(-(1+1)\)
\(-v\)
\(v=1+1\)
\(1\)
\(1\)
\(+\)
\(u\)
\(^{-1}\)
\(v\)
\(-\)
\(+\)
\(\circ\)
\(\circ\)
Operator
Variable
Polynomial/Word
(Meta-language)
Apply a homomorphism \(f:A\to B\)
\(f\left(\frac{x^2+1}{x-2}\right)\)
\(f(x^2+1)\)
\(f((x-2)^{-1})\)
\(f(x^2)\)
\(1_B\)
\(f(x)\)
\(f(x)\)
\(f(u^{-1})\)
\(f(u)=f(x-2)\)
\(+\)
\(\times\)
\(\times\)
\(x\)
\(-(1+1)\)
\(-v\)
\(v=1+1\)
\(1\)
\(1\)
\(+\)
\(f(u)\)
\(^{-1}\)
\(v\)
\(-\)
\(+\)
\(\circ\)
\(\circ\)
Operator
Variable
Polynomial/Word
(Meta-language)
Apply a homomorphism \(f:A\to B\)
\(f\left(\frac{x^2+1}{x-2}\right)\)
\(f(x^2+1)\)
\(f((x-2)^{-1})\)
\(f(x^2)\)
\(1_B\)
\(f(x)\)
\(f(x)\)
\(f(u^{-1})\)
\(f(u)=f(x-2)\)
\(+\)
\(\times\)
\(\times\)
\(f(x)\)
\(f(-(1+1))\)
\(-f(v)\)
\(f(v)=f(1+1)\)
\(1_B\)
\(1_B\)
\(+\)
\(f(u)\)
\(^{-1}\)
\(f(v)\)
\(-\)
\(+\)
\(\circ\)
\(\circ\)
Operator
Variable
Polynomial/Word
(Meta-language)
Apply a homomorphism \(f:A\to B\)
With out all the symbols...
\[f\circ \Phi=\Phi \circ f\]
Fix a signature \(\sigma\). If \(A\) is in a variety \(\mathfrak{V}(\Phi)\) and \(\varphi:A\to B\) is surjective homomorphism, then \(B\)
a in \(\mathfrak{V}(\Phi)\).
Proof.
Fix a signature \(\sigma\). If \(A\) is in a variety \(\mathfrak{V}(\Phi)\) and \(\varphi:A\to B\) is surjective homomorphism, then \(B\)
a in \(\mathfrak{V}(\Phi)\).
Corollary.
Varieties of algebras are closed under quotients.
Proof. \(A/_{\equiv}\) induces a homomorphims \(f:A\to A/_{\equiv}\) which is surjective. \(\Box\)