CC-BY 2021 James B. Wilson, Colorado State University, Mathematics
https://slides.com/jameswilson-3/quantumfuture/live
Touch and say ouch!
Touch and loose finger
(Newton) White = blend of all colors
So "white hot" supports Boltzman theory of heat.
Eventually we learned human vision at extremes is grey scale (rods not cones).
...science is not inevitable
Photo-electric effect
Shine a light on metal at right frequency \(\nu\),
Electrons scatter instantly,
No "warm up", non-continuous effect.
Einstein. Argues light is discrete particles (later called "photons") having energy exactly Planck's formula \[E=\hbar \nu\]
Light is a Particle.
I can hear sound (wave) around trees
Can't see (particle) around trees.
...Newton and others
Light is a wave.
Prism spreads light by slowing its speed so frequencies split,
Just like waves in water.
...Huygens and others
Young's 2-slit experiment. Eventually proved both are correct.
Maxwell extended to all electromagnetism
Jubobroff, CC BY-SA 3.0 , via Wikimedia Commons
Note that "observer" is an apparatuses, not a human
\[\Delta (position)\cdot \Delta(momentum) \geq \frac{\hbar}{4\pi}\]
(\(\Delta\) standard dev. in measurement)
the \(4\pi\) is unit specific.
Particle-wave "duality" is intuitive justification
``Bra-t''\[\langle t|=\begin{bmatrix} \bar{t}_1 & \cdots & \bar{t}_n\end{bmatrix}\]
``ket-u'' \[|u\rangle = \begin{bmatrix} u_1\\ \vdots \\ u_n\end{bmatrix}\]
``bracket-t-u''
\[\langle t|u\rangle=t^{\dagger} u \in \mathbb{C}\]
Generalize to infinite dimensional Hilbert spaces \(\mathcal{H}\) where \(\langle t|\) becomes an integral (Riesz Representation Theorem).
\(\langle t|\) vs. \(|t\rangle\) all taste,
I like rows, they use typed text space better.
\[\langle +-+| = \frac{\sqrt{2}}{2} (\langle 010|+\langle 101|)\]
\[H^{\otimes 4}|0000\rangle = |x\rangle\]
\[QFT(|x\rangle) =\frac{1}{\sqrt{2^n}}\bigotimes_{i=1}^n\left(|0\rangle+e^{x_i 2^{-i+1}\pi i}|1\rangle\right)\]
What is a vector?
....element of a vector space.
What is a tensor?
What is a tensor?
....element of a tensor space.
\[U_R=R^X/\mathrm{Span}_R S=\mathrm{Pres}_R\langle X|S\rangle\]
\[{_R V}=R^Y/\mathrm{Span}_R T=\mathrm{Pres}_R\langle Y|T\rangle\]
\[U\otimes_R V = R^{X\times Y}/(R^X\otimes T+S\otimes R^Y)\]
\[\begin{aligned} \otimes :R^X\times & R^Y\to R^{X\times Y}\\ (u\otimes v)_{xy}& =u_x v_y\end{aligned}\]
I.e.\[u\otimes v=\begin{bmatrix}u_1\\ \vdots \\ u_{m}\end{bmatrix}\begin{bmatrix} v_1 & \cdots & v_n\end{bmatrix} = \begin{bmatrix} u_1 v_1 & \cdots & u_1 v_n\\ \vdots & & \vdots \\ u_m v_1 & \cdots & u_m v_n\end{bmatrix}\]
5-valent tensor
Make a vector...
Measure a vector...
Make a 2-tensor...
Use a 2-tensor
\[\Gamma_{abcde}\in \mathbb{C}\]
Defn. A tensor space \(T\) is a vector space (module) with a linear map \[\langle \cdot |:T\to (V_1\otimes\cdots \otimes V_{\ell})^*\] \(t\in T\) is a tensor, \(V_a\) axes (or modes, or legs), and \(V_1,\ldots,V_{\ell}\) the (reference) frame.
\(\langle \cdot|\) interprets \(t\in T\) as multi-linear.
What is a tensor?
....element of a tensor space.
Let \(T=\mathbb{C}\hat{0}\oplus \mathbb{C}\hat{1}\), i.e. 2-dimensions with a silly basis \(\{\hat{0},\hat{1}\}\).
\(\langle \cdot |:\mathbb{C}^2\to (\mathbb{C}^2)^*\) will be simply \[\langle \alpha\hat{0}+\beta\hat{1}|u\rangle =\alpha u_1+\beta u_2.\]
So \(\langle \hat{0}|=[1,0]\) and \(\langle \hat{1}|=[0,1]\).
Now delete the hats!
So \(\langle 0|=[1,0]\) and \(\langle 1|=[0,1]\).
Let \(A=\mathbb{C}^{2}=\mathbb{C}\langle 0|\oplus \mathbb{C}\langle 1|\) and \(B=\mathbb{C}^{3}=\mathbb{C}\langle 0|\oplus \mathbb{C}\langle 1|\oplus \mathbb{C}\langle 2|\).
Let \[\langle ab|:=\langle a|\langle b|=\langle a|\otimes \langle b|\in (A\otimes B)^*\]
E.g. \(\langle 01|=\langle 0|\langle 1|=\begin{bmatrix} 1\\0 \end{bmatrix}\begin{bmatrix}0 & 1& 0 \end{bmatrix}=\begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 0 \end{bmatrix}\in (\mathbb{C}^2\otimes \mathbb{C}^3)^*\)
\(\langle 00|=E_{11},\langle 01|=E_{12},\langle 02|=E_{13}, \langle 10|=E_{21}, \langle 11|=E_{22},\langle 12|=E_{23}\)
\(\langle 0|,\ldots\langle m|\) usually just a basis, but common to write \[x=x_n 2^n+\cdots+x_0 2^0\qquad x_i\in \{0,1\}\] and so \[\langle x|=\langle x_n| \cdots \langle x_0|\in (\mathbb{C}^2)^{\otimes n}\] hence integer data written in binary "bits", only quantum so "qu-bits"
E.g. \(\langle 01|=\langle 0|\langle 1|=\begin{bmatrix} 1\\0 \end{bmatrix}\begin{bmatrix}0 & 1& 0 \end{bmatrix}=\begin{bmatrix} 0 & 1 & 0\\ 0 & 0 & 0 \end{bmatrix}\in (\mathbb{C}^2\otimes \mathbb{C}^3)^*\)
Explain \[\langle \uparrow\uparrow|-i\langle \downarrow\downarrow|\]
Tensor is a grid of numbers.
Numbers can be results of formulas ("tensor contraction")
Structure of formulas \(\Leftrightarrow\) Structure of Entanglement of many bodies
Find tensor network decompositions
Explain relations between equivalent decompositions
Classify, at least on small scales.
Math is graph theory & algebra & topology.
Tensor network of quantum entanglements in a quantum material.
Material interacts with environment on boundary (red dots).
The boundary (edge) physics is about the symmetries of individuals.
Explain the boundary physics of quantum materials ("edge theory")
Math is isomorphism testing of tensors and graphs.
Notice the Noise (Green). It somehow only locally obstructed symmetry.
Graphical properties of the network explain how to adjust edge theories under noise.
Explain the boundary physics of quantum materials ("edge theory") under noise
Very strange that something as precise as graph theory, not analysis, handles noise model....