James B. Wilson, joint with Joshua Maglione
https://slides.com/jameswilson-3/quick-sylver/
\(\exists\) matrices \(A,B,C,D\) where \[x'(t)=\mathsf{Model}(t,x,c)=Ax(t)+Bc(t)\] \[y(t)=\mathsf{Obs}(t,x,c) = Cx(t)+Dc(t)\]
stabilizable if \(\exists\) matrix \(F\) \[c(t)=Fx(t)\] where \[x'(t)=Ax(t)+BFx(t)\] converges to "stable".
\(\exists\) matrices \(A,B,C,D\) where \[x'(t)=\mathsf{Model}(t,x,c)=Ax(t)+Bc(t)\] \[y(t)=\mathsf{Obs}(t,x,c) = Cx(t)+Dc(t)\]
stabilizable if \(\exists\) matrix \(F\) \(c(t)=Fx(t)\).
reduce (Schur Form) \[\begin{bmatrix} A & B\\ C & D\end{bmatrix}\sim\begin{bmatrix} I & A^{-1}B\\ 0 & G\end{bmatrix}\qquad G=D-CA^{-1}B\]
new problem \(\tilde{x}'(t)=H\tilde{x}(t)+Fy(t)+Gc(t)\) where \(H\) is Hurwitz: \(Re(\lambda)<0\) on \(\lambda\in Spec(H)\)
Assume: \(\exists\) matrices \(A,B,C,D\) where \[x'(t)=\mathsf{Model}(t,x,c)=Ax(t)+Bc(t)\] \[y(t)=\mathsf{Obs}(t,x,c) = Cx(t)+Dc(t)\]
stabilizable if \(\exists\) matrix \(F\) \(c(t)=Fx(t)\)
Schur Form: \(G=D-CA^{-1}B\)
new problem \(\tilde{x}'(t)=H\tilde{x}(t)+Fy(t)+Gc(t)\) where \(H\) is Hurwitz: \(Re(\lambda)<0\) on \(\lambda\in Spec(H)\)
Luenberger: Estimate \(x(t)\) by solving for \(X\) \[HX-XA=-FC\] \(\|\tilde{x}(t)-Xx(t)\|\to 0\)
SOLVE FOR \(X\) IN \[HX-XA=-FC\]
Equation generalizes in shape hundreds of ways.
\[\begin{aligned} XA-BY &= C\\ Y & = B^{-1}(C+XA)\end{aligned}\]
So every \(X\) has a \(Y\).
Compute \(Y\) from \(X\) in \(O(d^3)\)-ops.
\[\begin{aligned} XA-BY &= C\\ Y & = B^{\#}(C+XA)\end{aligned}\]
Again every \(X\) has a \(Y\).
Construct \(Y\) from given \(X\) in \(O(d^3)\)-ops.
\[\begin{aligned} XA-BX &= C & X & = B^{-1}(C+XA)\end{aligned}\]
...no clear solution.
\[XA-BX = C\]
d=1000 makes for exaflops of work!
100 Mega Watts @ 10 gigflops/Watt.
vs. 0.1 Watt for \(O(d^3)\) version.
Sylvester's Theorem: If \(A,B\) are square and have a common eigen value then \[(\exists ! X)(XA-BX=C).\]
By dimensions expect at most one solution, i.e. \(d^2\) equations in \(d^2\) unknowns.
Iteratively apply \(A\) to vector \(v\) till \(\exists\alpha_i\)\[\begin{aligned} A^{k+1} v& =\alpha_0 A^0v+\cdots +\alpha_k A^k v \\ ann_A(x) & = x^{k+1}-a_{k-1}x^{k-1}-\cdots -a_1 x^1 -a_0\end{aligned}\] Choices in how to (a) discover relation (b) apply relation.
Bartels-Stewart Theorem. There is an \(O(d^3)\)-time algorithm to solve \(XA-BX=C\).
Find Schur Decomposition
\[\begin{aligned} F^*AF & = \begin{bmatrix} I & * \\ 0 & \tilde{A}\end{bmatrix} & EBE^* & = \begin{bmatrix} I & * \\ 0 & \tilde{B}\end{bmatrix}\end{aligned}\]
Solve smaller system \[\tilde{X}\tilde{A}-\tilde{B}\tilde{X}=\tilde{C}\] and pull back through
\[EXAF+EBYF=ECF\]
\(X=Y\) shifts from one Sylvester system to a simultaneous system...
\[\begin{aligned} XA_1 -B_1 Y & = C_1\\ XA_2-B_2 Y & = C_2\end{aligned}\] where \(A_2=I_d, B_2=I_d,C_2=0\).
Same happens if \(X=X^t, \bar{X}^t\)
\(A^s=[A_{**s}]\) \(B_t=[B_{*t*}]\)
(Technically this is the matrix for a transposed version.)
Tempted to echelonize?
It Shave an order of magnitude, but fills in quick.
And yet a ton of symmetry...exploit this!
2-tensor/Matrix
3-tensor/list of matrices
4-tensor/Filing cabinet of spreadsheets
\([[E]]X[A][[F]]\)
\(-[[E]][B]Y[[F]]\)
\(=[[E]][C][[F]]\)
\[\begin{bmatrix} (A^1)^{-1} & \\ -(A^1)^{-1}A^2& I & & \\ \vdots & & \ddots & \\ -(A^1)^{-1} A^c & & & I\end{bmatrix}\begin{bmatrix} A^1\\ A^2 \\ \vdots \\ A^c\end{bmatrix}=\begin{bmatrix}A^1\\ 0\\ \vdots\\ 0\end{bmatrix}\]
\[\begin{bmatrix} A_1^{-1} & \\ -A_1^{-1}A_2& I & & \\ \vdots & & \ddots & \\ -A_1^{-1} A_c & & & I\end{bmatrix}\begin{bmatrix} A_1\\ A_2 \\ \vdots \\ A_c\end{bmatrix}=\begin{bmatrix}A_1\\ 0\\ \vdots\\ 0\end{bmatrix}\]
Controlled 4-tensor/Filing cabinet one drawer full
=
\([[E]]X[A][[F]]\)
\(-[[E]][B]Y[[F]]\)
\(=[[E]][C][[F]]\)
(As [[E]] slides past [[F]] we can face echelonize [B])
(Face echelonize [A] leaves a tiny system to solve)
Schneider's Problem: The actual complexity now is \(O(d^{3.5})\) to find one solution.