James B. Wilson Professor of Mathematics
Conjunction
\[\frac{\Gamma \vdash Q,P}{\Gamma \vdash P\wedge Q}\]
Dilemma: \[\begin{array}{c} P \vdash R \\ P\vdash R\\ P\vee Q \\ \hline R \end{array}\]
Syllogism: a largely poetic scheme with 3 parts.
First "syntax" based model of logic.
There are 256 options, but only 24 "valid", history of mnemonics "Barbara, Barbari,..."
(Major premise)
(Minor premise)
(Conclusion)
Ignore the poetry, expand the premises.
\[\frac{Premises}{Conclusion}\]
Line is pronounced "entails"
One-line notation
\(Premises ~\vdash~Conclusion\)
We call it "Turnstyle", typed U+22A2 or &vdash or \vdash
<Conjunction> ::= both <Term> and <Term>
<Conjunction> ::= (<Term> && <Term>)
\[\langle conj\rangle ::= (\langle term\rangle \wedge \langle term\rangle)\]
"both Jack and Jill"
(i<=j) && (j<=100)
\[(x^2=0)\wedge(x\geq 0)\]
(L)anguage
2. Make introduction.
\[\langle conj\rangle ::= (\langle term\rangle \wedge \langle term\rangle)\]
\(P,Q \vdash P\wedge Q\qquad (I_{\wedge})\).
\[\begin{array}{rl} \Gamma &\vdash P\\ \Gamma &\vdash Q\\ \hline \Gamma & \vdash P \wedge Q\end{array}\qquad(I_{\wedge})\]
I for "intro", symbol to remind use of operator
Better yet, make context explicit as \(\Gamma\) or \(\texttt{ctx}\)
(L)anguage
(I)ntroduction
\[\begin{array}{rl} \Gamma &\vdash P\wedge Q\\ \hline \Gamma & \vdash P\end{array}(E_{L\wedge})\qquad\begin{array}{rl} \Gamma &\vdash P\wedge Q\\ \hline \Gamma & \vdash Q\end{array}(E_{\wedge R})\]
\[\langle conj\rangle ::= (\langle term\rangle \wedge \langle term\rangle)\]
3. Rule(s) to eliminate symbol.
\(P,Q \vdash P\wedge Q\qquad (I_{\wedge})\).
\(P\wedge Q \vdash P\qquad (E_{L\wedge})\)
\(P\wedge Q \vdash Q \qquad (E_{\wedge R})\)
(L)anguage
(I)ntroduction
\[\langle conj\rangle ::= (\langle term\rangle \wedge \langle term\rangle)\]
(E)limination
\(P,Q \vdash P\wedge Q\qquad (I_{\wedge})\).
\(P\wedge Q \vdash P\qquad (E_{L\wedge})\)
\(P\wedge Q \vdash Q \qquad (E_{\wedge R})\)
L.I.E. is a pattern for many logical operators
(L)anguage
(I)ntroduction
\[\langle conj\rangle ::= (\langle term\rangle \wedge \langle term\rangle)\]
(E)limination
\(P,Q \vdash P\wedge Q\qquad (I_{\wedge})\).
\(P\wedge Q \vdash P\qquad (E_{L\wedge})\)
\(P\wedge Q \vdash Q \qquad (E_{\wedge R})\)
Measurements are absolute values. = \(\Gamma \vdash P:=(\ell\geq 0)\)
Area is 100. = \(\Gamma \vdash (\ell^2=100)\)
\(\Gamma \vdash (\ell\geq 0) \wedge (\ell^2=100)\)
What part of our AND "LIE" are we using?
(L)anguage
(I)ntroduction
\[\langle conj\rangle ::= (\langle term\rangle \wedge \langle term\rangle)\]
(E)limination
\(P,Q \vdash P\wedge Q\qquad (I_{\wedge})\).
\(P\wedge Q \vdash P\qquad (E_{L\wedge})\)
\(P\wedge Q \vdash Q \qquad (E_{\wedge R})\)
Lakes are deep and wide.
Lakes are deep
What part of our AND "LIE" are we using?
(L)anguage
(I)ntroduction
\[\langle conj\rangle ::= (\langle term\rangle \vee \langle term\rangle)\]
(E)limination
\(P \vdash P\vee Q\qquad (I_{L \vee})\)
\(Q \vdash P\vee Q\qquad (I_{\wedge R})\)
\(P\vee Q \vdash P?\) or is it \(P\vee Q \vdash Q?\)
What a dilemma!
Disjunctive Dilemma
\[\begin{array}{rl} \ \Gamma,P &\vdash R \\ \Gamma,Q&\vdash R\\ \Gamma &\vdash P\vee Q\\ \hline \Gamma & \vdash R\end{array}\]
<disjunction> ::= either <term> or <term>
<disjunction> ::= <term> || <term>
(L)anguage
(I)ntroduction
\[\langle conj\rangle ::= (\langle term\rangle \vee \langle term\rangle)\]
(E)limination
\(P \vdash P\vee Q\qquad (I_{L \vee})\)
\(Q \vdash P\vee Q\qquad (I_{\wedge R})\)
Disjunctive Dilemma
\[\begin{array}{rl} \ \Gamma,P &\vdash R \\ \Gamma,Q&\vdash R\\ \Gamma &\vdash P\vee Q\\ \hline \Gamma & \vdash R\end{array}\]
Wet roads lead to car crashes,
inexperience leads to car crashes, and
today there is a wet road or inexperienced driver then ...
...we will have a car crash.
And and Or are similar and in many ways "dual":
However, there are some hints of non-dual nature, e.g. we cannot use Or without a third term.
(L)anguage
(I)ntroduction
\[\langle boolean\rangle ::= \top ~|~ \bot \]
(E)limination
\(\vdash \top\)
\(\bot\vdash P\)
<boolean> ::= true | false
Law of Explosion:
One false premise can conclude anything.
Used in classical and intuitionisitic logic, avoid in paraconsistent logic.
You can always assume truth is valid, so \(P\vdash \top\).
(L)anguage
(I)ntroduction
\[\langle neg\rangle ::= \neg <term> \]
(E)limination
\[\frac{\Gamma, P\vdash \bot}{\Gamma \vdash \neg P}\]
\[\begin{array}{rl} \Gamma & \vdash \neg P\\ \Gamma & \vdash P\\ \hline \Gamma & \vdash \bot\end{array}\]
<neg> ::= not <term>
If P leads to falsity, it cannot be true.
<neg> ::= !<term>
\[\frac{ P\vdash \bot}{ \vdash \neg P}\]
\[\frac{\Gamma\vdash ~(\neg P) \wedge P}{\Gamma\vdash ~\bot}\]
Premise "P" leads to falsity \(\bot\)
Conclusion "not P" is valid.
(L)anguage
(I)ntroduction
\[\langle implies\rangle ::= <term>\Rightarrow <term>\]
(E)limination
\[\begin{array}{rl} \Gamma & \vdash P\Rightarrow Q\\ \Gamma & \vdash P\\ \hline \Gamma & \vdash Q\end{array}\]
<implies> ::= if <term> then <term>
\[\frac{ \Gamma, \overbrace{P,\ldots,P}\vdash Q}{\Gamma \vdash P\Rightarrow Q}\]
"P" appears any number of times, even 0 times!