2021 James B. Wilson, Colorado State University
\(\lambda\)
\(SKI\)-combinators
\((x,y),(x,z)\in F\Rightarrow y=z\)
A function \(f:A\to B\) is a subset \(f\subset A\times B\) where
So \((x,y)\in f\) means \(y\) is unique to \(x\) can we call it the output denoted \[f(x)=y.\]
\(f(x)=x+2\)
If \(P\) and \(P\Rightarrow Q\) then \(Q\)
In \(\lambda\)-notation
\(\lambda x.2x\)
CMP AX BX
DIV CX DX
JMP RX
println(toString(541));
In combinator notation
\(S(BBS)(KK)\)
Church (1930) \(\lambda\)-calculus
Schoenfinkel (1920)
Curry (1927) Combinators