2020 James B. Wilson
Colorado State University
\[\begin{array}{c|ccc} * & 1 & a & b\\ \hline 1 & 1 & a & b\\ a & a & a & b\\ b & b & b & b\end{array}\]
\[\begin{array}{c|ccc} \oplus & x & y\\ \hline x & y & x\\ y & x & y \end{array}\]
\[\mathbb{N}\]
\[\begin{array}{c|ccc} * & 1 & a & b\\ \hline 1 & 1 & a & b\\ a & a & a & b\\ b & a & a & b\end{array}\]
\(\mathbb{M}_2(\mathbb{Q})\)
\[\begin{array}{c|ccc} \oplus & x & y\\ \hline x & x & y \\ y & x & y \end{array}\]
All \([2]\)-algebraic structures
\[\begin{array}{c|ccc} * & 1 & a & b\\ \hline 1 & 1 & a & b\\ a & a & a & b\\ b & b & b & b\end{array}\]
Fix a signature \(\sigma\).
A polynomial (or "word" or "formula") in \(\sigma\) is a grammatically correct ("parseable") string of
E.g. For \(\sigma=\{+,0\}\), \(x+y,(x+0)+(y+z)\);
but not \(x^2-x\), the latter requires \(\sigma\) contain `\(-\)' and products.
\(\frac{x^2+1}{x-2}\)
\(x^2+1\)
\((x-2)^{-1}\)
\(x^2\)
\(1\)
\(x\)
\(x\)
\(u^{-1}\)
\(u=x-2\)
\(+\)
\(\times\)
\(\times\)
\(x\)
\(-(1+1)\)
\(-v\)
\(v=1+1\)
\(1\)
\(1\)
\(+\)
\(u\)
\(^{-1}\)
\(v\)
\(-\)
\(+\)
\(\circ\)
\(\circ\)
Operator
Variable
Polynomial/Word
(Meta-language)
A generalize view of "polynomials", "words", and "formulas"
Fix a signature \(\sigma\).
E.g. For \(\sigma=\{+,0\}\), \(x+y=y+x, x+0=x\);
but not \(x+(-x)=0\), uses symbols outside \(\sigma\).
Do not confuse with more "high-school" concept of "algebraic variety" whose elements are points in space.
Technically \(x*1=x\) and \(1*x=x\) are separate laws.
Fields are clearly important, why kick them out over such a small thing?
Come back to this in next lesson.