Modeling Collective Social Behavior
with Statistical Physics
Jan Korbel
Slides available at: slides.com/jankorbel
Personal web: jankorbel.eu
Bounded confidence models- Individuals adjust their opinions if they are sufficiently close
Homophily
McPherson, Smith-Lovin and Cook (2001). Annual Review of Sociology. 27: 415–444.
Social balance
[1] J. R. Soc. Interface. (2020) 1720200752
[2] Sci. Rep. (2021) 11, 17188
[3] PNAS (2022) 119 (6) e2121103119
Yellow region - the system is balance (triangles are balanced) - difference between (+ + +) and (+ - - )
[4] npj Complexity 2 (2025) 1
[5] Phys. Rev. Lett. 130 (2023) 057401
Hamiltonian of a group \(\mathcal{G}\)
\(H(\mathbf{s}_{i_1},\dots,\mathbf{s}_{i_k}) = \textcolor{red}{\underbrace{- \phi \, \frac{J}{2} \sum_{ij \in \mathcal{G}} A_{ij} \mathbf{s}_i \cdot \mathbf{s}_j}_{intra-group \ social \ stress}} \textcolor{blue}{ + \underbrace{(1-\phi) \frac{J}{2} \sum_{i \in \mathcal{G}, j \notin \mathcal{G}} A_{ij} \mathbf{s}_{i} \cdot \mathbf{s}_j}_{inter-group \ social \ stress}} - \underbrace{h \sum_{i \in \mathcal{G}} \mathbf{s}_i \cdot \mathbf{w}}_{external \ field}\)
Group 1
Group 2
friends
enemies
To derive the equilibrium distribution, we extend entropy to systems with emergent structures (molecules, social groups...)
\(W(n_i^{(j)}) = \frac{n!}{\prod_{ij} n_i^{(j)}! \color{red}(j!)^{n_i^{(j)}}}\)
$$\mathcal{S} = - \sum_{ij} \wp_i^{(j)} (\log \wp_i^{(j)} {\color{red}- 1}) {\color{red}- \sum_{ij} \wp_i^{(j)}\log \frac{j!}{n^{j-1}}}$$
\( S = k \cdot \log W\)
[6] Nat. Comm. 12 (2021) 1127
These two approximations lead to the set of self-consistency equations:
$$m^{(k)} = k \sum_{q^{(k)} q^{(k,l)}} P(q^{(k)}) P(q^{(k,l)}) \tanh(\beta H^{(k)}(m^{(l)},q^{(k)},q^{(k,l)})) $$
where \(q^{(k)}\) is the intra-group degree, \(q^{(k,l)}\) is the inter-group degree and \(P\) is the degree distribution
Theory
MC simulation
[7] to be submitted soon
[8] Nat. Commun. 16 (2025) 2628
csh.ac.at
Stefan Thurner
Rudolf Hanel
Tuan Pham Minh
Simon Lindner
Markus Hofer
Mirta Galesic
Henrik Olsson
Remah Dahdoul
csh.ac.at
References:
[1] T.P.M., Imre Kondor, R.H., S.T., Journal of Royal Society Interface (2020) 1720200752
[2] T.P.M., Andrew Alexander, J.K., R.H., S.T., Scientific Reports 11 (2021) 17188
[3] T.P.M., J.K. R.H., S.T., PNAS 119 (6) (2022) e2121103119
[4] M.G., H.O., T.P.M., Johannes Sorger, S.T., npj Complexity 2 (2025) 1
[5] J.K., S.L., T.P.M., R.H., S.T. Physical Review Letters 130 (2023) 057401
[6] J.K., S.L., R.H., S.T., Nature Communications 12 (2021) 1127
[7] M.H., J.K., S.T., to be submitted
[8] J.K., Shlomo Havlin, S.T., Nature Communications 16 (2025) 2628