Jan Korbel, Rudolf Hanel and Stefan Thurner
Statistical Physics of Complex Systems, 7-11 May 2019, Nordita, Stockholm
\(^\star\) R.H., S.T. EPL 93 (2011) 20006
J.K., R.H., S.T. New J. Phys. 20 (2018) 093007
$$W^{(l)}(N) \equiv \log^{(l+1)}(W(x)) = \sum_{j=0}^n c_j^{(l)} \log^{(j+1)}(N) + \mathcal{O} (\phi_n (N))$$
$$ c^{(l)}_k = \lim_{N \rightarrow \infty} \log^{(k)}(N) \left( \log^{(k-1)} \left(\dots\left( \log N \left(\frac{N W'(N)}{\prod_{i=0}^l \log^{(i)}(W(N))}-c^{(l)}_0\right)-c^{(l)}_1\right) \dots\right) - c^{(l)}_k\right)$$
Process | S(W) | |||
---|---|---|---|---|
Random walk |
0 |
1 |
0 |
|
Aging random walk |
0 |
2 |
0 |
|
Magnetic coins * |
0 |
1 |
-1 |
|
Random network |
0 |
1/2 |
0 |
|
Random walk cascade |
0 |
0 |
1 |
\( \log W\)
\( (\log W)^2\)
\( (\log W)^{1/2}\)
\( \log \log W\)
\(d_0\)
\(d_1\)
\(d_2\)
\( \log W/\log \log W\)
* H. Jensen et al. J. Phys. A: Math. Theor. 51 375002
\( W(N) = 2^N\)
\(W(N) \approx 2^{\sqrt{N}/2} \sim 2^{N^{1/2}}\)
\( W(N) \approx N^{N/2} e^{2 \sqrt{N}} \sim e^{N \log N}\)
\(W(N) = 2^{\binom{N}{2}} \sim 2^{N^2}\)
\(W(N) = 2^{2^N}-1 \sim 2^{2^N}\)
R.H., S.T. EPL 93 (2011) 20006
To fulfill SK axiom 2 (maximality): \(d_l > 0\), to fulfill SK axiom 3 (expandability): \(d_0 < 1\)
Fields of possible applications of scaling expansions:
\(^\star\) J.K., R.H., S.T. Entropy 21(2) (2019) 112
\(^\dag\) P. Tempesta, Proc. R. Soc. A 472 (2016) 2195
\(^\ddag\) P.J., J.K. Phys. Rev. Lett. 122 (2019), 120601
I am excited to discuss any possible application
of scaling expansions
during the welcome reception or later