Jan Korbel, Rudolf Hanel and Stefan Thurner
Statistical Physics of Complex Systems, 7-11 May 2019, Nordita, Stockholm
⋆ R.H., S.T. EPL 93 (2011) 20006
J.K., R.H., S.T. New J. Phys. 20 (2018) 093007
W(l)(N)≡log(l+1)(W(x))=j=0∑ncj(l)log(j+1)(N)+O(ϕn(N))
ck(l)=N→∞lim log(k)(N)(log(k−1)(…(logN(∏i=0llog(i)(W(N))NW′(N)−c0(l))−c1(l))…)−ck(l))
Process | S(W) | |||
---|---|---|---|---|
Random walk |
0 |
1 |
0 |
|
Aging random walk |
0 |
2 |
0 |
|
Magnetic coins * |
0 |
1 |
-1 |
|
Random network |
0 |
1/2 |
0 |
|
Random walk cascade |
0 |
0 |
1 |
logW
(logW)2
(logW)1/2
loglogW
d0
d1
d2
logW/loglogW
* H. Jensen et al. J. Phys. A: Math. Theor. 51 375002
W(N)=2N
W(N)≈2N/2∼2N1/2
W(N)≈NN/2 e2N∼eNlogN
W(N)=2(2N)∼2N2
W(N)=22N−1∼22N
R.H., S.T. EPL 93 (2011) 20006
To fulfill SK axiom 2 (maximality): dl>0, to fulfill SK axiom 3 (expandability): d0<1
Fields of possible applications of scaling expansions:
⋆ J.K., R.H., S.T. Entropy 21(2) (2019) 112
† P. Tempesta, Proc. R. Soc. A 472 (2016) 2195
‡ P.J., J.K. Phys. Rev. Lett. 122 (2019), 120601
I am excited to discuss any possible application
of scaling expansions
during the welcome reception or later