L. Horstmeyer, T. Minh Pham, J. Korbel and S. Thurner
$$ \frac{\mathrm{d} X_i(t)}{\mathrm{d} t} = \sum_j M_{ij} X_j(t) - \Phi X_i(t) \qquad \qquad (1)$$
\(M_{ij}\) - interaction matrix
\( \Phi\) - decay rate
Network \(G\): \(N\) nodes with adjacency matrix \(M\)
Convergence: For any initial condition \(x(0)\) except a set of points of Lebesgue-measure zero \(x(t)\) converges to a stable fixed point \(x\) that is a non-negative eigenvector of \(M\).
Fixed point \(x\) satisfies eigenvector equation
$$ \sum_j M_{ij} x_j = \lambda x_i \qquad \qquad (2)$$
\(M_{ij} \in \{0,[1-\epsilon,1]\}\)
\(x^{(K)}_i = \alpha \sum_{ij} M_{ij} x_j^{(K)} + \beta \qquad \beta=1\)
Selection: choose one of the least fit species \( i_{\min} \in \arg\min_i x_i\)
Mutation: delete all existing links from/to \(x_{i_{\min}}\) and assign new directed links with each existing node with probability \(\frac{m}{N-1}\)
Slow-scale dynamics:
growth phase \(\rightarrow\) ordered phase \(\rightarrow\) collapse to random phase (no cycles)
$$\langle T \rangle = \frac{e}{m} \quad (\mathrm{for} \ N \gg 1)$$
$$ \frac{\mathrm{d} p_i(t)}{\mathrm{d} t} = \beta \sum_j M_{ij} p_j (1-p_i) - r p_i $$
Reference: L.H., T.M.P., J.K., S.T. Predicting collapse of adaptive networked systems without knowing the network, accepted to Sci. Rep.