universal tool for classification of complex systems
Jan Korbel, Rudolf Hanel and Stefan Thurner
Asymptotic behavior of \(W(N)\) for \(N \rightarrow \infty\) can be described by the Poincaré asymptotic expansion
$$ f(W(N)) = \sum_{j=0}^n c_j \phi_{j}(N) + \mathcal{O}(\phi_n(N))$$
where \(f(W(N)) = \mathcal{O}(\phi_0(N)) \) and \(\phi_{j+1}(N) = \mathcal{O}(\phi_{j}(N)) \)
Question: What set of functions \( \phi_j(N) \) describes scaling of \(W(N)\)?
Do the coefficients \( c_j \) have any connection to scaling?
Answer: Yes!
We can define an expansion, where the coefficients
\(c_j\) are the scaling exponents of \(W(N)\)
Notation: \(f^{(n)}(x) = \underbrace{f(f(\dots(f(x))\dots))}_{n \ \mathrm{times}} \)
Let us choose \(\phi_j(N) = \log^{(j+1)}(N)\), Then for some \(l\) we can write $$W^{(l)}(N) \equiv \log^{(l+1)}(W(x)) = \sum_{j=0}^n c_j^{(l)} \log^{(j+1)}(N) + \mathcal{O} (\phi_n (N))$$
The coefficients \(c_j^{(l)}\) are the scaling exponents of \(W\)!
We define the set of rescalings \(r_\lambda^{(n)}(x) := \exp^{(n)}(\lambda \log^{(n)}(x) \) )
So \(r_\lambda^{(0)}(x) = \lambda x\), \(r_\lambda^{(1)}(x) = x^\lambda\), \(r_\lambda^{(2)}(x) = e^{\log(x)^\lambda} \), ...
Properties: \(r_\lambda^{(n)} (r_{\lambda'}^{(n)}(x)) = r_{\lambda \lambda'}^{(n)}(x) \), \(r_1^{(n)}(x) = x\)
Leading order scaling: \( \lim_{N \rightarrow \infty}\frac{W^{(l)}(r_\lambda^{(0)}(N))}{W^{(l)}(N)} = \lambda^{\bf c_0^{(l)}} \)
First correction scaling: \( \lim_{N \rightarrow \infty} \frac{W^{(l)} (r_\lambda^{(1)}(N))}{W^{(l)}(N)} \left(\frac{r_\lambda^{(1)}(N)}{N}\right)^{-c_0^{(l)}} = \lambda^{\bf c_1^{(l)}}\)
General rescaling: \( \lim_{N \rightarrow \infty} \frac{W^{(l)}(r_\lambda^{(k)}(N))}{W^{(l)}(N)} \prod_{j=0}^{k-1} \left(\frac{\log^{(j)}(r_\lambda^{(k)}(N))}{\log^{(j)} N}\right)^{-c_j^{(l)}} = \lambda^{\bf c_k^{(l)}}\)
Scaling expansion: \( W(N) \sim \exp^{(l)}\left(\prod_{j=0}^n (\log^{(j)}(N))^{c_j^{(l)}} \right)\)
J.K., R.H., S.T. New J. Phys. 20 093007
step to the left/step to the right
\(W(N) = 2^N\)
possible configurations (paths)
Exponential growth:
R.H., S.T. EPL 96 50003, Entropy 15 5324.
Sub-exponential growth (stretched exponential):
2 steps in the same direction,
3 steps in the same direction....
\(W(N) \approx 2^{\sqrt{N}/2} \sim 2^{N^{1/2}}\)
Sub-exponential growth:
\(\pi(N) \sim N/\log N\)
H. Jensen et al. J. Phys. A: Math. Theor. 51 375002
Super-exponential growth:
Super-exponential growth (compressed exponential):
Super-exponential growth (double-exponential):
Process | S(W) | |||
---|---|---|---|---|
Random walk | 0 | 1 | 0 | |
Aging random walk | 0 | 2 | 0 | |
Riemann random walk | 0 | 1 | 1 | |
Magnetic coins | 0 | 1 | -1 | |
Random networks | 0 | 1/2 | 0 | |
Random walk cascade | 0 | 0 | 1 |
$$ S(W) \sim \prod_{j=0}^n (\log^{(j)} W)^{d_j}$$
\( \log W\)
\( (\log W)^2\)
\( (\log W)^{1/2}\)
\( \log \log W\)
\( \log W/\log \log W\)
\(d_0\)
\(d_1\)
\(d_2\)
\( \log W \cdot \log \log W\)
in terms of \( \frac{1}{x-x_c} \)
$$ \log F(x) = \sum_{j=0}^n [\log^{(j+1)}(1/(x-x_c))]^{\alpha_j} + \mathcal{O}(\phi_n) $$
\( g_{ij}(p) = \frac{\partial^2 D(p||q)}{\partial q_i \partial q_j}|_{p=q} \)
J.K., R.H., S.T. arXiv:1812.09893
Other possible applications:
We would like to discuss any possible applications, where
might appear and play a role