Jan Korbel
CSH Workshop
"Holographic and other Cosmologically Relevant Entropies"
20-22 January 2025
Slides available at: https://slides.com/jankorbel
Personal web: https://jankorbel.eu
with Petr Jizba (CTU in Prague)
Axiomatization from the Information theory point of view
These four axioms lead to Shannon entropy $$ H(P) = - \sum_i p_i \log p_i $$
$$\langle X \rangle_f := f^{-1} \left(\frac{1}{n} \sum_i f(x_i)\right)$$
We now replace SK4 with the following axiom:
4. Composability: Entropy of a joined system \( A \cup B\) can be expressed as \(S(A \cup B) = S(A|B) \otimes_f S(B)\), where \(S(A|B)\) is conditional entropy satisfying consistency requirements I.), II.)
I.) For independent variables \(A,B\), the joint entropy \(S(A \cup B)\) should be composable from entropies \(S(A)\) and \(S(B)\), i.e., \(S(A \cup B) = F(S(A),S(B))\)
II.) Conditional entropy should be decomposable into entropies of conditional distributions, i.e., \(S(B|A) = G\left( P_A, \{S(B|A=a_i)\}_{i=1}^m\right)\)
P.J. & J.K. Phys. Rev. E 101, 042126
with Petr Jizba (CTU in Prague)
P.J. & J.K. Phys. Rev. Lett. 122 (2019), 120601
Entropies fulfilling SJ axioms is the same as for SK axioms: $$S_q^f(P) = f\left[\left(\sum_i p_i^q\right)^{1/(1-q)}\right] = f\left[\exp_q\left( \sum_i p_i \log_q(1/p_i) \right)\right]$$
MaxEnt distribution: q-exponential
$$p_i = \frac{1}{Z_q} \exp_q\left(-\hat{\beta} \Delta E_i \right)$$
$$ Z_q = \sum_i \left[\exp_q\left(-\hat{\beta} \Delta E_i \right)\right]$$
$$\hat{\beta} = \frac{\beta}{q f'\left(Z_q\right) Z_q}$$
Conclusions: Uffink class of entropies can be used as a measure of information as well as for Maximum entropy principle
composition rule of \(p_{ij} \propto \exp_q (-\beta (E_i + E_j)) \)
$$\frac{1}{p_{ij} Z_q(P)} = \frac{1}{u_{i} Z_q(U)} \otimes_q \frac{1}{v_{j} Z_q(V)} $$
or in terms of escort distributions \(P_{ij}(q) = p_{ij}^q/\sum_{ij} p_{ij}^q \)
$$ \frac{P_{ij}(q)}{p_{ij}} = \frac{U_{i}(q)}{u_{i}}\ + \ \frac{V_{j}(q)}{v_{j}} - 1$$
J.K. Entropy 23 (2021) 96
with Fernando Rosas (ICL London) and Pablo Morales (Araya, Japan)
$$\langle X + Y \rangle_\gamma = \langle X \rangle_\gamma + \langle Y \rangle_\gamma \Leftrightarrow X \perp \!\!\! \perp Y$$
P.M., J.K. & F. E. R. New J. Phys 25 (2023) 073011
$$ \frac{1}{\gamma} \frac{\pi_i^{-\gamma}}{\sum_k \pi_k^{1-\gamma}} - \alpha_0 - \frac{\alpha_1}{\beta \gamma} \frac{e^{\gamma \beta \epsilon_i}}{\sum_k \pi_k e^{\gamma \beta \epsilon_k}} = 0$$
$$ \mathcal{R}_\gamma^\beta = \beta^2 \, \frac{\mathcal{F}^{\beta'} - \mathcal{F}^\beta}{\beta'-\beta} $$
which is the \(\beta\) rescaling of the free energy difference.
$$ \mathcal{U}^\beta = - \left(\frac{\partial \Psi^\beta}{\partial \beta}\right)\, $$
with Rudolf Hanel and Stefan Thurner (both CSH)
\(^\star\) R.H., S.T. EPL 93 (2011) 20006
Can we go further?
J.K., R.H., S.T. New J. Phys. 20 (2018) 093007
$$W^{(l)}(N) \equiv \log^{(l+1)}(W(x)) = \sum_{j=0}^n c_j^{(l)} \log^{(j+1)}(N) + \mathcal{O} (\phi_n (N))$$
$$ c^{(l)}_k = \lim_{N \rightarrow \infty} \log^{(k)}(N) \left( \log^{(k-1)} \left(\dots\left( \log N \left(\frac{N W'(N)}{\prod_{i=0}^l \log^{(i)}(W(N))}-c^{(l)}_0\right)-c^{(l)}_1\right) \dots\right) - c^{(l)}_k\right)$$
Process | S(W) | |||
---|---|---|---|---|
Random walk |
0 |
1 |
0 |
|
Aging random walk |
0 |
2 |
0 |
|
Magnetic coins * |
0 |
1 |
-1 |
|
Random network |
0 |
1/2 |
0 |
|
Random walk cascade |
0 |
0 |
1 |
\( \log W\)
\( (\log W)^2\)
\( (\log W)^{1/2}\)
\( \log \log W\)
\(d_0\)
\(d_1\)
\(d_2\)
\( \log W/\log \log W\)
* H. Jensen et al. J. Phys. A: Math. Theor. 51 375002
\( W(N) = 2^N\)
\(W(N) \approx 2^{\sqrt{N}/2} \sim 2^{N^{1/2}}\)
\( W(N) \approx N^{N/2} e^{2 \sqrt{N}} \sim e^{N \log N}\)
\(W(N) = 2^{\binom{N}{2}} \sim 2^{N^2}\)
\(W(N) = 2^{2^N}-1 \sim 2^{2^N}\)
How does it change for one more scaling exponent?
R.H., S.T. EPL 93 (2011) 20006
To fulfill SK axiom 2 (maximality): \(d_l > 0\), to fulfill SK axiom 3 (expandability): \(d_0 < 1\)