Jeanne Colbois | CNRS - LPT Toulouse | France
IQTN workshop | Tensor networks for constrained systems | Delft, 18.10.2023
1
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Classical frustrated systems
The constraints appearing in the low-temperature limit need to be correctly described at the level of a single tensor for the contraction to converge
2
Short-range, classical spin Hamiltonian on a lattice...
TIAFM in a field
Kagome lattice
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
3
1. Motivation : classical frustrated Ising models
2. The frustration problem
3. A simple case: the triangular lattice Ising antiferromagnet
4. Farther-neighbor models on the kagome lattice
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
4
Andrew Smerald
KIT | Germany
Frédéric Mila
EPFL | Switzerland
Frank Verstraete
Ghent University | Belgium
Laurens Vanderstraeten
Ghent University | Belgium
Samuel Nyckees
EPFL | Switzerland
Afonso Rufino
EPFL | Switzerland
Bram Vanhecke
University of Vienna | Austria
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Andrew Smerald
KIT | Germany
Frédéric Mila
EPFL | Switzerland
Frank Verstraete
Ghent University | Belgium
Laurens Vanderstraeten
Ghent University | Belgium
Samuel Nyckees
EPFL | Switzerland
Afonso Rufino
EPFL | Switzerland
Bram Vanhecke
University of Vienna | Austria
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
4
Andrew Smerald
KIT | Germany
Frédéric Mila
EPFL | Switzerland
Frank Verstraete
Ghent University | Belgium
Laurens Vanderstraeten
Ghent University | Belgium
Samuel Nyckees
EPFL | Switzerland
Afonso Rufino
EPFL | Switzerland
Bram Vanhecke
University of Vienna | Austria
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
4
Andrew Smerald
KIT | Germany
Frédéric Mila
EPFL | Switzerland
Frank Verstraete
Ghent University | Belgium
Laurens Vanderstraeten
Ghent University | Belgium
Samuel Nyckees
EPFL | Switzerland
Afonso Rufino
EPFL | Switzerland
Bram Vanhecke
University of Vienna | Austria
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
4
5
G.H. Wannier, PR 79, (1950, 1973)
K. Kano and S. Naya, Prog. Theor. Phys. 10, (1953)
2-up 1-down (UUD),
2-down 1-up (DDU)
A. Sütö, Z. Phys. B 44, (1981)
W. Apel, H.-U. Everts, J. Stat. Mech, (2011)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
6
In-plane artificial kagome /square ice
L. Anghinolfi et al.,
Nat. Commun. 6, (2015)
Monopoles in spin ice
C. Castlenovo, R. Moessner, S. L. Sondhi, Nature 451 (2008)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
T. Mizoguichi, L. Jaubert, M. Udagawa, PRL 119, 077207 (2017)
D. Kiese, F. Ferrari, N. Astrakhantsev, N. Niggemann, P. Ghosh et al. , PRR 5, L012025 (2023)
Hexamer spin liquid
7
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)
Chioar et al., PRB 90, (2014)
Luo et al. Science 363, (2019)
Colbois et al., PRB 104 (2021)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
8
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Monte Carlo?
no sign problem (classical)
ergodicity
Entanglement scaling vs finite-size scaling
TNs give direct access to the partition function per site
R. J. Baxter, J. Math. Phys. 9, 1968
R. Orús, G. Vidal, PRB 78, 2008
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
9
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
R. J. Baxter, J. Math. Phys. 9, 1968
Orús, Vidal, PRB 78, 2008;
V. Zauner-Stauber et. al. PRB 97,2018;
M. Fishman et. al PRB 98, 2018
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
10
R. J. Baxter, J. Math. Phys. 9, 1968
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
P. Corboz, T. M. Rice, and M. Troyer, PRL 113, 2014
Row to row transfer matrix \(\rightarrow\) MPO
R. J. Baxter, J. Math. Phys. 9, 1968
Orús, Vidal, PRB 78, 2008;
V. Zauner-Stauber et. al. PRB 97,2018;
M. Fishman et. al PRB 98, 2018
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
10
R. J. Baxter, J. Math. Phys. 9, 1968
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
P. Corboz, T. M. Rice, and M. Troyer, PRL 113, 2014
Row to row transfer matrix \(\rightarrow\) MPO
R. J. Baxter, J. Math. Phys. 9, 1968
Orús, Vidal, PRB 78, 2008;
V. Zauner-Stauber et. al. PRB 97,2018;
M. Fishman et. al PRB 98, 2018
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
10
R. J. Baxter, J. Math. Phys. 9, 1968
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
P. Corboz, T. M. Rice, and M. Troyer, PRL 113, 2014
Row to row transfer matrix \(\rightarrow\) MPO
R. J. Baxter, J. Math. Phys. 9, 1968
Orús, Vidal, PRB 78, 2008;
V. Zauner-Stauber et. al. PRB 97,2018;
M. Fishman et. al PRB 98, 2018
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
10
R. J. Baxter, J. Math. Phys. 9, 1968
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
P. Corboz, T. M. Rice, and M. Troyer, PRL 113, 2014
11
R. J. Baxter, J. Math. Phys. 9, 1968
Orús, Vidal, PRB 78, 2008;
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
V. Zauner-Stauber et. al. PRB 97,2018;
M. Fishman et. al PRB 98, 2018
\(\langle m \rangle\) =
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
R. J. Baxter, J. Math. Phys. 9, 1968
Orús, Vidal, PRB 78, 2008;
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
V. Zauner-Stauber et. al. PRB 97,2018;
M. Fishman et. al PRB 98, 2018
\(\langle m \rangle\) =
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
\(\rightarrow\) patches of the infinite lattice
11
Ueda, et al. JSPS 74, 111-124 (2005)
T. Viejira, J. Haegeman, F. Verstraete, L. Vanderstraeten, PRB 104, 235141 (2021)
R. J. Baxter, J. Math. Phys. 9, 1968
Orús, Vidal, PRB 78, 2008;
T. Nishino, K. Okunishi, J. Phys. Soc. Jpn 65, 1996
V. Zauner-Stauber et. al. PRB 97,2018;
M. Fishman et. al PRB 98, 2018
\(\langle m \rangle\) =
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
\(\rightarrow\) patches of the infinite lattice
11
Ueda, et al. JSPS 74, 111-124 (2005)
T. Viejira, J. Haegeman, F. Verstraete, L. Vanderstraeten, PRB 104, 235141 (2021)
12
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Fails in the presence of
frustration and macroscopic g.s. degeneracy
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
12
\(\rightarrow\) in spin glasses
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
J. G. Liu, L. Wang, P. Zhang, PRL 126, (2021)
Fails in the presence of
frustration and macroscopic g.s. degeneracy
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
B. Vanhecke, JC, et al. PRR 3, (2021)
\(\rightarrow\) in spin glasses
\(\rightarrow \) in translation-invariant frustrated Ising models
12
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
J. G. Liu, L. Wang, P. Zhang, PRL 126, (2021)
Fails in the presence of
frustration and macroscopic g.s. degeneracy
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
B. Vanhecke, JC, et al. PRR 3, (2021)
\(\rightarrow\) in spin glasses
\(\rightarrow \) in translation-invariant frustrated Ising models
\(\rightarrow\) in lattice gas models
S. A. Akimenko, PRE 107, (2023)
12
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
J. G. Liu, L. Wang, P. Zhang, PRL 126, (2021)
Fails in the presence of
frustration and macroscopic g.s. degeneracy
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
B. Vanhecke, JC, et al. PRR 3, (2021)
\(\rightarrow\) in spin glasses
\(\rightarrow \) in translation-invariant frustrated Ising models
\(\rightarrow\) in lattice gas models
\(\rightarrow\) in frustrated XY models
S. A. Akimenko, PRE 107, (2023)
F.F. Song, T.-Y. Lin, G. M. Zhang, arXiv:2309.05321
12
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
J. G. Liu, L. Wang, P. Zhang, PRL 126, (2021)
13
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Contracting the TN of a frustrated model
Numerical problem
Cancellation of small and large factors
13
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Contracting the TN of a frustrated model
Numerical problem
Cancellation of small and large factors
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
\(\rightarrow\) precision?
13
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Contracting the TN of a frustrated model
Numerical problem
Cancellation of small and large factors
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
\(\rightarrow\) precision?
J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)
\(\rightarrow\) log?
13
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Contracting the TN of a frustrated model
Numerical problem
Cancellation of small and large factors
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
\(\rightarrow\) precision?
J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)
\(\rightarrow\) log?
MPO
The MPO is badly conditioned (e.g. not hermitian, ...). Fix it?
13
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Contracting the TN of a frustrated model
Numerical problem
Ground-state rule
Cancellation of small and large factors
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
\(\rightarrow\) precision?
J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)
\(\rightarrow\) log?
MPO
The MPO is badly conditioned (e.g. not hermitian, ...). Fix it?
Failure to minimize simultaneously all local Hamiltonians.
B. Vanhecke, JC, et al. PRR 3, (2021)
F.F. Song, T.-Y. Lin, G. M. Zhang, arXiv:2309.05321
13
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Contracting the TN of a frustrated model
Numerical problem
Ground-state rule
Cancellation of small and large factors
C. Wang, S.-M. Qin, H.-J. Zhou, PRB 90, (2014)
Z. Zhu, H. G. Katzgraber, arXiv:1903.07721 (2019)
\(\rightarrow\) precision?
J. G. Liu, L. Wang, P. Zhan, PRL 126, (2021)
\(\rightarrow\) log?
MPO
The MPO is badly conditioned (e.g. not hermitian, ...). Fix it?
Failure to minimize simultaneously all local Hamiltonians.
B. Vanhecke, JC, et al. PRR 3, (2021)
F.F. Song, T.-Y. Lin, G. M. Zhang, arXiv:2309.05321
Bram Vanhecke
University of Vienna | Austria
14
1. Split
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969);
M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981);
W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
P. W. Anderson, PR 83, (1951).
Essential idea : Anderson bounds
1. Split
2. Lower bound on GS energy
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969);
M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981);
W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
14
P. W. Anderson, PR 83, (1951).
Essential idea : Anderson bounds
1. Split
2. Lower bound on GS energy
3. Maximize with respect to the weights:
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969);
M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981);
W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
14
P. W. Anderson, PR 83, (1951).
Essential idea : Anderson bounds
1. Split
2. Lower bound on GS energy
3. Maximize with respect to the weights:
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969);
M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981);
W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Ground states
tiling of configurations that minimize the local Hamiltonian
14
P. W. Anderson, PR 83, (1951).
Essential idea : Anderson bounds
1. Split
2. Lower bound on GS energy
3. Maximize with respect to the weights:
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, (1969);
M. Kaburagi, J. Kanamori, Prog. Theor. Phys. 54 , (1975);
B. Sriram Shastry and B. Sutherland, Physica 108 B+C, (1981);
W. Huang, D. A. Kitchaev, et. al. , Phys. Rev. B 94, (2016)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
14
P. W. Anderson, PR 83, (1951).
Essential idea : Anderson bounds
Ground states
tiling of configurations that minimize the local Hamiltonian
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
15
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
15
Turned the problem into a tiling problem.
L. Vanderstraeten , B. Vanhecke, F. Verstraete, PRE 98, (2018)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
15
Turned the problem into a tiling problem.
For NN models, naturally occurs from the "interactions-round-a-face" construction
see e.g. R. J. Baxter, J. Stat. Phys. 19, (1978)
L. Vanderstraeten , B. Vanhecke, F. Verstraete, PRE 98, (2018)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
15
Turned the problem into a tiling problem.
For NN models, naturally occurs from the "interactions-round-a-face" construction
\(J_1 - J_2\) on kagome
see e.g. R. J. Baxter, J. Stat. Phys. 19, (1978)
L. Vanderstraeten , B. Vanhecke, F. Verstraete, PRE 98, (2018)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
16
17
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
17
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
17
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
17
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
17
18
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
F.F. Song, T.-Y. Lin, G. M. Zhang, arXiv:2309.05321
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
See e.g. Henley (2010) or Nienhuis (1984)
18
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
F.F. Song, T.-Y. Lin, G. M. Zhang, arXiv:2309.05321
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
See e.g. Henley (2010) or Nienhuis (1984)
18
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
F.F. Song, T.-Y. Lin, G. M. Zhang, arXiv:2309.05321
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
See e.g. Henley (2010) or Nienhuis (1984)
18
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
F.F. Song, T.-Y. Lin, G. M. Zhang, arXiv:2309.05321
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
See e.g. Henley (2010) or Nienhuis (1984)
18
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
F.F. Song, T.-Y. Lin, G. M. Zhang, arXiv:2309.05321
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
See e.g. Henley (2010) or Nienhuis (1984)
18
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
F.F. Song, T.-Y. Lin, G. M. Zhang, arXiv:2309.05321
B. Vanhecke, JC, L. Vanderstraeten, F. Verstraete, F. Mila, PRR 3, (2021)
See e.g. Henley (2010) or Nienhuis (1984)
19
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
19
G.S. critical
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
G. H. Wannier, PR 79, 1950
Stephenson, J. Math. Phys. 11, 1970
Height model!
19
B. Nienhuis, H. J. Hilhorst, and H. W. J. Blote, J. Phys. A. 17, (1984).
No transition at finite temperature
Stephenson, J. Math. Phys. 11, 1970
Jacobsen, Fogedby, Physica A 246, 1997
Houtappel, Physica 16, 1950
G.S. critical
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
G. H. Wannier, PR 79, 1950
Stephenson, J. Math. Phys. 11, 1970
19
Height model!
B. Nienhuis, H. J. Hilhorst, and H. W. J. Blote, J. Phys. A. 17, (1984).
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
20
Alexander P.L.A 54 (1975)
Kinzel & Schick PRB 23 (1981)
Noh & Kim, Int. J. Phys. B 06 ( 1992)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
20
Racz PRB 21, 1980;
Qian, Wegewijs, Blöte PRE 69, 2004;
Baxter, Exactly solved models
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Alexander P.L.A 54 (1975)
Kinzel & Schick PRB 23 (1981)
Noh & Kim, Int. J. Phys. B 06 ( 1992)
20
Racz PRB 21, 1980;
Qian, Wegewijs, Blöte PRE 69, 2004;
Baxter, Exactly solved models
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Alexander P.L.A 54 (1975)
Kinzel & Schick PRB 23 (1981)
Noh & Kim, Int. J. Phys. B 06 ( 1992)
20
Blöte, Nightingale, Wu, Hoogland, PRB 43, (1991)
Blöte, Nightingale, PRB 47, (1993)
Qian, Wegewijs, Blöte, PRE 69 (2004)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
21
Flat
Rough
22
S. Nyckees, A. Rufino, F. Mila & JC, arXiv:2306.0904 (2023)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Limit at T = 0 where H = h/T is constant
23
Samuel Nyckees
EPFL | Switzerland
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
S. Nyckees, A. Rufino, F. Mila & JC, arXiv:2306.0904 (2023)
I. V. Lukin and A. G. Sotnikov, PRB 107, 054424 (2023)
A. Gendiar, R. Krcmar, S. Andergassen, M. Daniška,
and T. Nishino, PRE 86, 021105 (2012)
Samuel Nyckees
EPFL | Switzerland
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
23
S. Nyckees, A. Rufino, F. Mila & JC, arXiv:2306.0904 (2023)
I. V. Lukin and A. G. Sotnikov, PRB 107, 054424 (2023)
A. Gendiar, R. Krcmar, S. Andergassen, M. Daniška,
and T. Nishino, PRE 86, 021105 (2012)
Samuel Nyckees
EPFL | Switzerland
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
23
S. Nyckees, A. Rufino, F. Mila & JC, arXiv:2306.0904 (2023)
I. V. Lukin and A. G. Sotnikov, PRB 107, 054424 (2023)
A. Gendiar, R. Krcmar, S. Andergassen, M. Daniška,
and T. Nishino, PRE 86, 021105 (2012)
Samuel Nyckees
EPFL | Switzerland
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
23
S. Nyckees, A. Rufino, F. Mila & JC, arXiv:2306.0904 (2023)
I. V. Lukin and A. G. Sotnikov, PRB 107, 054424 (2023)
A. Gendiar, R. Krcmar, S. Andergassen, M. Daniška,
and T. Nishino, PRE 86, 021105 (2012)
Samuel Nyckees
EPFL | Switzerland
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
23
S. Nyckees, A. Rufino, F. Mila & JC, arXiv:2306.0904 (2023)
Samuel Nyckees
EPFL | Switzerland
24
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Order parameter for 3-sublattice order (3 states of the triangle)
S. Nyckees, A. Rufino, F. Mila & JC, arXiv:2306.0904 (2023)
Samuel Nyckees
EPFL | Switzerland
24
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
S. Nyckees, A. Rufino, F. Mila & JC, arXiv:2306.0904 (2023)
Order parameter for 3-sublattice order (3 states of the triangle)
Single-site -> no access to TM
Samuel Nyckees
EPFL | Switzerland
24
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Order parameter for 3-sublattice order (3 states of the triangle)
Single-site -> no access to TM
S. Nyckees, A. Rufino, F. Mila & JC, arXiv:2306.0904 (2023)
F. Pollmann, S. Mukerjee, A. M. Turner, J.E. Moore, PRL 102 (2009)
L. Tagliacozzo, T. R. de Oliveira, S. Iblisdir, J.I. Latorre, PRB 78 (2008)
\(\Rightarrow\) exponents from log. fits, assuming \(c\).
Samuel Nyckees
EPFL | Switzerland
Qian, Wegewijs, Blöte PRE 69 (2004) : TM results
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
23
A, B : convergence modulo 3 (B=C)
S. Nyckees, A. Rufino, F. Mila & JC, arXiv:2306.0904 (2023)
Samuel Nyckees
EPFL | Switzerland
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
24
S. Nyckees, A. Rufino, F. Mila & JC, arXiv:2306.0904 (2023)
\(\eta\) in agreement with 3-state Potts
Qian, Wegewijs, Blöte PRE 69 (2004)
Samuel Nyckees
EPFL | Switzerland
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
24
\(\eta\) in agreement with 3-state Potts
S. Nyckees, A. Rufino, F. Mila & JC, arXiv:2306.0904 (2023)
Qian, Wegewijs, Blöte PRE 69 (2004)
I. A. Chioar, N. Rougemaille, B. Canals, PRB 93, (2016)
J. Hamp, C. Castelnovo, R. Moessner, PRB 98, (2018)
L. Cugliandolo, L. Foini, M. Tarzia, PRB 101 (2020)
Chioar et al., PRB 90, (2014)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
25
26
JC, B. Vanhecke et. al., PRB 106 (2022)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
27
JC, B. Vanhecke et. al., PRB 106 (2022)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
28
JC, B. Vanhecke et. al., PRB 106 (2022)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
28
JC, B. Vanhecke et. al., PRB 106 (2022)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
28
JC, B. Vanhecke et. al., PRB 106 (2022)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
29
JC, B. Vanhecke et. al., PRB 106 (2022)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking
Relation to the TIAFM
32
TNs
Is there always a cell relaxing the frustration? (Hard vs weak frustration)
Can the problem be fixed at the level of the MPO?
Consequences for iPEPS?
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
32
TNs
Is there always a cell relaxing the frustration? (Hard vs weak frustration)
Can the problem be fixed at the level of the MPO?
Consequences for iPEPS?
Beyond
classical, short-range
Ising
Effect of quantum fluctuations?
Other classical constrained models? Other challenges?
NN Frustrated XY models. Farther-neighbors? Heisenberg?
Long-range interactions? (TNMH)
Spin glasses ? (Tropical TNs)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
JC, B. Vanhecke et. al., PRB 106 (2022)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
JC, B. Vanhecke et. al., PRB 106 (2022)
JC, B. Vanhecke et. al., PRB 106 (2022)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
\(\mathbb{Z}_2 \times \mathbb{Z}_3\) symmetry breaking
Relation to the TIAFM
AF. order in horizontal direction
Absence of vertical dimers
JC, B. Vanhecke et. al., PRB 106 (2022); A. Rufino, S. Nyckees, JC, F. Mila, in preparation
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, Academic Press (1971)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, Academic Press (1971)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, Academic Press (1971)
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, Academic Press (1971)
"Exact contraction"
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, Academic Press (1971)
"Exact contraction"
"Approximate contraction"
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, Academic Press (1971)
"Contraction"
Matrix / tensor
Vector
Open legs = number of indices = "rank"
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, Academic Press (1971)
"Exact contraction"
"Approximate contraction"
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023
Tensor notation: R. Penrose, in Combinatorial Mathematics and its applications, Academic Press (1971)
"Contraction"
Matrix / tensor
Vector
Open legs = number of indices = "rank"
J. COLBOIS | TENSOR NETWORKS FOR CONSTRAINED SYSTEMS | DELFT | 18.10.2023