Johannes Köster
AEBC 2017
https://koesterlab.github.io
dataset
results
"Let me do that by hand..."
dataset
results
dataset
dataset
dataset
dataset
dataset
"Let me do that by hand..."
dataset
results
dataset
dataset
dataset
dataset
dataset
automation
From raw data to final figures:
dataset
results
dataset
dataset
dataset
dataset
dataset
scalability
Handle parallelization:
automation
dataset
results
dataset
dataset
dataset
dataset
dataset
Handle deployment:
be able to easily execute analyses on a different machine
portability
scalability
automation
dataset
results
dataset
dataset
dataset
dataset
dataset
scalability
automation
portability
Nextflow
Galaxy
Bpipe
Taverna
Bcbio-nexgen
Hadoop
KNIME
Snakemake
CWL
Genome of the Netherlands:
GoNL consortium. Nature Genetics 2014.
Cancer:
Townsend et al. Cancer Cell 2016.
Schramm et al. Nature Genetics 2015.
Martin et al. Nature Genetics 2013.
Ebola:
Park et al. Cell 2015
iPSC:
Burrows et al. PLOS Genetics 2016.
Computational methods:
Ziller et al. Nature Methods 2015.
Schmied et al. Bioinformatics 2015.
Břinda et al. Bioinformatics 2015
Chang et al. Molecular Cell 2014.
Marschall et al. Bioinformatics 2012.
dataset
results
dataset
dataset
dataset
dataset
dataset
rule mytask:
input:
"path/to/{dataset}.txt"
output:
"result/{dataset}.txt"
script:
"scripts/myscript.R"
rule myfiltration:
input:
"result/{dataset}.txt"
output:
"result/{dataset}.filtered.txt"
shell:
"mycommand {input} > {output}"
rule aggregate:
input:
"results/dataset1.filtered.txt",
"results/dataset2.filtered.txt"
output:
"plots/myplot.pdf"
script:
"scripts/myplot.R"
rule mytask:
input:
"data/{sample}.txt"
output:
"result/{sample}.txt"
conda:
"software-envs/some-tool.yaml"
shell:
"some-tool {input} > {output}"
rule name
refer to input and output from shell command
how to create output from input
(shell, Python, R)
dataset
results
dataset
dataset
dataset
dataset
dataset
scalability
automation
portability
Paradigm:
Workflow definition shall be independent of computing platform and available resources
Rules:
define resource usage (threads, memory, ...)
Scheduler:
workstation
compute server
cluster
grid computing
cloud computing
# execute workflow locally with 16 CPU cores
snakemake --cores 16
# execute on cluster
snakemake --cluster qsub --jobs 100
# execute in the cloud
snakemake --kubernetes --jobs 1000 --default-remote-provider GS --default-remote-prefix mybucket
dataset
results
dataset
dataset
dataset
dataset
dataset
Full reproducibility:
install required software and all dependencies in exact versions
portability
scalability
automation
source("https://bioconductor.org/biocLite.R")
biocLite("DESeq2")
easy_install snakemake
./configure --prefix=/usr/local
make
make install
cp lib/amd64/jli/*.so lib
cp lib/amd64/*.so lib
cp * $PREFIX
cpan -i bioperl
cmake ../../my_project \
-DCMAKE_MODULE_PATH=~/devel/seqan/util/cmake \
-DSEQAN_INCLUDE_PATH=~/devel/seqan/include
make
make install
apt-get install bwa
yum install python-h5py
install.packages("matrixpls")
Of 47 open-access publications, ...
https://github.com/bioconda/bioconda-recipes/pull/1951
status | count |
---|---|
properly documented, easy to install | 4 |
web service | 4 |
Docker image | 1 |
R packages, not (yet) on CRAN or Bioconductor | 3 |
no software implementation | 7 |
MATLAB code | 4 |
available upon request | 2 |
collection of scripts without proper way to install | 12 |
demo only although README promises a release before ISMB | 1 |
either unclear, no, or errorneous installation instructions | 3 |
missing download URL | 1 |
invalid links | 4 |
build error | 1 |
Of 47 open-access publications, ...
https://github.com/bioconda/bioconda-recipes/pull/1951
status | count |
---|---|
properly documented, easy to install | 4 |
web service | 4 |
Docker image | 1 |
R packages, not (yet) on CRAN or Bioconductor | 3 |
no software implementation | 7 |
MATLAB code | 4 |
available upon request | 2 |
collection of scripts without proper way to install | 12 |
demo only although README promises a release before ISMB | 1 |
either unclear, no, or errorneous installation instructions | 3 |
missing download URL | 1 |
invalid links | 4 |
build error | 1 |
good (26%)
bad (53%)
ugly (21%)
package:
name: seqtk
version: 1.2
source:
fn: v1.2.tar.gz
url: https://github.com/lh3/seqtk/archive/v1.2.tar.gz
requirements:
build:
- gcc
- zlib
run:
- zlib
about:
home: https://github.com/lh3/seqtk
license: MIT License
summary: Seqtk is a fast and lightweight tool for processing sequences
test:
commands:
- seqtk seq
Idea:
Normalization installation via recipes
#!/bin/bash
export C_INCLUDE_PATH=${PREFIX}/include
export LIBRARY_PATH=${PREFIX}/lib
make all
mkdir -p $PREFIX/bin
cp seqtk $PREFIX/bin
Easy installation and management:
no admin rights needed
conda install pandas
conda update pandas
conda remove pandas
conda env create -f myenv.yaml -n myenv
Isolated environments:
channels:
- conda-forge
- defaults
dependencies:
- pandas ==0.20.3
- statsmodels ==0.8.0
- r-dplyr ==0.7.0
- r-base ==3.4.1
- python ==3.6.0
rule mytask:
input:
"path/to/{dataset}.txt"
output:
"result/{dataset}.txt"
conda:
"envs/mycommand.yaml"
shell:
"mycommand {input} > {output}"
channels:
- conda-forge
- defaults
dependencies:
- mycommand ==2.3.1
Over 2800 bioinformatics related packages
Over 200 contributors
Builds and tests:
Paradigm:
dataset
results
dataset
dataset
dataset
dataset
dataset
portability
scalability
automation
How to publish this in a sustainable way?
Goal:
Minimize dependencies:
Solution:
# archive workflow (including Conda packages)
snakemake --archive myworkflow.tar.gz
Author:
Reader:
# execute workflow (Conda packages are deployed automatically)
snakemake --use-conda --cores 16
portability
scalability
automation
The Snakemake core team
The Bioconda core team